Skip to main content

Hydration Dynamics of Probes and Peptides in Captivity

  • Chapter
  • First Online:
Book cover Reviews in Fluorescence 2010

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2010))

Abstract

Water confined on nanometer-length scales is found in many physical and biological environments. Confinement induces special dynamics in liquids, different from that of their bulk counterparts. Reverse micelles, formed by the self-assembly of amphiphilic surfactants in nonpolar solvents, have emerged as an appropriate molecular assembly to monitor the property of water upon confinement due to a number of reasons. A unique advantage of reverse micelles is that molecular dynamics can be monitored with varying states of hydration that is difficult to achieve with assemblies, such as membranes. In this article, we focus on the change in confined hydration dynamics accompanied with increasing hydration, monitored by red edge excitation shift (REES). REES can be effectively used to directly monitor the environment and dynamics around a fluorophore in a molecular assembly utilizing slow solvent relaxation around an excited state fluorophore. It is apparent from the examples discussed that change in solvent relaxation with hydration is complicated and could depend on a number of factors, such as the location of the probe in the reverse micelle and the structure and compactness of the fluorophore involved. We conclude that care should be exercised in interpreting such results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12-AS:

12-(9-Anthroyloxy)stearic acid

2-AS:

2-(9-Anthroyloxy)stearic acid

6-AS:

6-(9-Anthroyloxy)stearic acid

AOT:

Sodium bis(2-ethylhexyl)sulfosuccinate

EGFP:

Enhanced green fluorescent protein

GFP:

Green fluorescent protein

NBD:

7-Nitrobenz-2-oxa-1,3-diazol-4-yl

NBD-cholesterol:

25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol

NBD-PE:

N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

REES:

Red edge excitation shift

References

  1. Abbyad P, Childs W, Shi X, Boxer SG (2007) Dynamic Stokes shift in green fluorescent ­protein variants. Proc Natl Acad Sci USA 104:20189–20194

    Article  PubMed  CAS  Google Scholar 

  2. Abel S, Waks M, Urbach W, Marchi M (2006) Structure, stability, and hydration of a polypeptide in AOT reverse micelles. J Am Chem Soc 128:382–383

    Article  PubMed  CAS  Google Scholar 

  3. Abrams FS, Chattopadhyay A, London E (1992) Determination of the location of fluorescent probes attached to fatty acids using the parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry 31:5322–5327

    Article  PubMed  CAS  Google Scholar 

  4. Abrams FS, London E (1993) Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826–10831

    Article  PubMed  CAS  Google Scholar 

  5. Andrade SM, Costa SM, Pansu R (2000) The influence of water on the photophysical and photochemical properties of Piroxicam in AOT/iso-octane/water reversed micelles. Photochem Photobiol 71:405–412

    Article  PubMed  CAS  Google Scholar 

  6. Bizzarri AR, Cannistraro S (2002) Molecular dynamics of water at the protein–solvent interface. J Phys Chem B 106:6617–6633

    Article  CAS  Google Scholar 

  7. Behera GB, Mishra BK, Behera PK, Panda M (1999) Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions. Adv Colloid Interface Sci 82:1–42

    Article  CAS  Google Scholar 

  8. Bertorelle F, Dondon R, Fery-Forgues S (2002) Compared behavior of hydrophobic fluorescent NBD probes in micelles and in cyclodextrins. J Fluoresc 12:205–207

    Article  CAS  Google Scholar 

  9. Bhattacharyya K, Bagchi B (2000) Slow dynamics of constrained water in complex geometries. J Phys Chem A 104:10603–10613

    Article  CAS  Google Scholar 

  10. Brubach J-B, Mermet A, Filabozzi A, Gerschel A, Lairez D, Krafft MP, Roy P (2001) Dependence of water dynamics upon confinement size. J Phys Chem B 105:430–435

    Article  CAS  Google Scholar 

  11. Chattopadhyay A (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 53:1–15

    Article  PubMed  CAS  Google Scholar 

  12. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17

    Article  PubMed  CAS  Google Scholar 

  13. Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45

    Article  PubMed  CAS  Google Scholar 

  14. Chattopadhyay A, London E (1988) Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes. Biochim Biophys Acta 938: 24–34

    Article  PubMed  CAS  Google Scholar 

  15. Chattopadhyay A, Mukherjee S (1993) Fluorophore environments in membrane-bound probes: a red edge excitation shift study. Biochemistry 32:3804–3811

    Article  PubMed  CAS  Google Scholar 

  16. Chattopadhyay A, Mukherjee S (1999) Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick. Langmuir 15:2142–2148

    Article  CAS  Google Scholar 

  17. Chattopadhyay A, Mukherjee S (1999) Red edge excitation shift of a deeply embedded membrane probe: implications in water penetration in the bilayer. J Phys Chem B 103:8180–8185

    Article  CAS  Google Scholar 

  18. Chattopadhyay A, Mukherjee S, Raghuraman H (2002) Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 106:13002–13009

    Article  CAS  Google Scholar 

  19. Cohen B, Huppert D, Solntsev KM, Tsfadia Y, Nachliel E, Gutman M (2002) Excited state proton transfer in reverse micelles. J Am Chem Soc 124:7539–7547

    Article  PubMed  CAS  Google Scholar 

  20. Colombo MF, Rau DC, Parsegian VA (1992) Protein solvation in allosteric regulation: a water effect on hemoglobin. Science 256:655–659

    Article  PubMed  CAS  Google Scholar 

  21. De TK, Maitra A (1995) Solution behaviour of aerosol OT in non-polar solvents. Adv Colloid Interface Sci 59:95–193

    Article  CAS  Google Scholar 

  22. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17: 19–42

    Article  PubMed  CAS  Google Scholar 

  23. Demchenko AP (2008) Site-selective red-edge effects. Methods Enzymol 450:59–78

    Article  PubMed  CAS  Google Scholar 

  24. Eastoe J, Young WK, Robinson BH, Steytier DC (1990) Scattering studies of microemulsions in low-density alkanes. J Chem So Faraday Trans 86:2883–2889

    Article  CAS  Google Scholar 

  25. Faeder J, Ladanyi BM (2000) Molecular dynamics simulations of the interior of aqueous reverse micelles. J Phys Chem B 104:1033–1046

    Article  CAS  Google Scholar 

  26. Fenimore PW, Frauenfelder H, McMohan BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and function. Proc Natl Acad Sci USA 99:16047–16051

    Article  PubMed  CAS  Google Scholar 

  27. Fery-Forgues S, Fayet J-P, Lopez A (1993) Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state? J Photochem Photobiol A 70:229–243

    Article  CAS  Google Scholar 

  28. Granick S (1991) Motions and relaxations of confined liquids. Science 253:1374–1379

    Article  PubMed  CAS  Google Scholar 

  29. Haldar S, Chattopadhyay A (2007) Dipolar relaxation within the protein matrix of the green fluorescent protein: a red edge excitation shift study. J Phys Chem B 111:14436–14439

    Article  PubMed  CAS  Google Scholar 

  30. Haldar S, Raghuraman H, Chattopadhyay A (2008) Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J Phys Chem B 112:14075–14082

    Article  PubMed  CAS  Google Scholar 

  31. Haldar S, Chattopadhyay A (2009) The green journey. J Fluoresc 19:1–2

    Article  PubMed  Google Scholar 

  32. Haldar S, Chattopadhyay A (2009) Green fluorescent protein: a molecular lantern that illuminates the cellular interior. J Biosci 34:169–172

    Article  PubMed  CAS  Google Scholar 

  33. Häussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313:697–710

    PubMed  Google Scholar 

  34. Hazra P, Sarkar N (2001) Intramolecular charge transfer processes and solvation dynamics of coumarin 490 in reverse micelles. Chem Phys Lett 342:303–311

    Article  CAS  Google Scholar 

  35. Hof M, Lianos P, Laschewsky A (1997) An amphiphilic hemicyanine dye employed as a sensitive probe of water in reverse AOT micelles. Langmuir 13:2181–2183

    Article  CAS  Google Scholar 

  36. Ikushima Y, Saito N, Arai M (1997) The nature and structure of water/AOT/ethane (w/o) microemulsion under supercritical conditions studied by high-pressure FT-IR spectroscopy. J Colloid Interface Sci 186:254–263

    Article  PubMed  CAS  Google Scholar 

  37. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  PubMed  CAS  Google Scholar 

  38. Jain TK, Varshney M, Maitra A (1989) Structural studies of Aerosol OT reverse micellar aggregates by FT-IR spectroscopy. J Phys Chem 93:7409–7416

    Article  CAS  Google Scholar 

  39. Kelkar DA, Chattopadhyay A (2004) Depth-dependent solvent relaxation in reverse micelles: a fluorescence approach. J Phys Chem B 108:12151–12158

    Article  CAS  Google Scholar 

  40. Kelkar DA, Chattopadhyay A (2005) Effect of graded hydration on the dynamics of an ion channel peptide: a fluorescence approach. Biophys J 88:1070–1080

    Article  PubMed  CAS  Google Scholar 

  41. Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768:2011–2025

    Article  PubMed  CAS  Google Scholar 

  42. Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    Article  PubMed  CAS  Google Scholar 

  43. Lin S, Struve WS (1991) Time-resolved fluorescence of nitrobenzoxadiazole-aminohexanoic acid: effect of intermolecular hydrogen-bonding on non-radiative decay. Photochem Photobiol 54:361–365

    Article  PubMed  CAS  Google Scholar 

  44. Levinger NE (2002) Water in confinement. Science 298:1722–1723

    Article  PubMed  CAS  Google Scholar 

  45. Levinger NE, Swafford LA (2009) Ultrafast dynamics in reverse micelles. Annu Rev Phys Chem 60:385–406

    Article  PubMed  CAS  Google Scholar 

  46. Luisi PL, Magid LJ (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit Rev Biochem 20:409–473

    Article  PubMed  CAS  Google Scholar 

  47. Luisi PL, Giomini M, Pileni MP, Robinson BH (1988) Reverse micelles as hosts for proteins and small molecules. Biochim Biophys Acta 947:209–246

    PubMed  CAS  Google Scholar 

  48. Mattos C (2002) Protein-water interactions in a dynamic world. Trends Biochem Sci 27:203–208

    Article  PubMed  CAS  Google Scholar 

  49. Mazères S, Schram V, Tocanne J-F, Lopez A (1996) 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J 71: 327–335

    Article  PubMed  Google Scholar 

  50. Melo EP, Aires-Barros MR, Cabral JMS (2001) Reverse micelles and protein biotechnology. Biotechnol Annu Rev 7:87–129

    Article  PubMed  CAS  Google Scholar 

  51. Mentré P (2001) An introduction to “water in the cell”: tamed hydra? Cell Mol Biol 47: 709–715

    PubMed  Google Scholar 

  52. Mitra B, Hammes GG (1990) Membrane-protein structural mapping of chloroplast coupling factor in asolectin vesicles. Biochemistry 29:9879–9884

    Article  PubMed  CAS  Google Scholar 

  53. Moilanen DE, Fenn EE, Wong D, Fayer MD (2009) Geometry and nanolength scales versus interface interactions: water dynamics in AOT lamellar structures and reverse micelles. J Am Chem Soc 131:8318–8328

    Article  PubMed  CAS  Google Scholar 

  54. Mukherjee S, Chattopadhyay A (1994) Motionally restricted tryptophan environments at the peptide–lipid interface of gramicidin channels. Biochemistry 33:5089–5097

    Article  PubMed  CAS  Google Scholar 

  55. Mukherjee S, Chattopadhyay A, Samanta A, Soujanya T (1994) Dipole moment change of NBD group upon excitation studied using solvatochromic and quantum chemical approaches: implications in membrane research. J Phys Chem 98:2809–2812

    Article  CAS  Google Scholar 

  56. Mukherjee S, Chattopadhyay A (1995) Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluoresc 5:237–246

    Article  CAS  Google Scholar 

  57. Mukherjee S, Chattopadhyay A (1996) Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry 35:1311–1322

    Article  PubMed  CAS  Google Scholar 

  58. Mukherjee S, Kalipatnapu S, Pucadyil TJ, Chattopadhyay A (2006) Monitoring the organization and dynamics of bovine hippocampal membranes utilizing differentially localized fluorescent membrane probes. Mol Membr Biol 23:430–441

    Article  PubMed  CAS  Google Scholar 

  59. Papoian GA, Ulander J, Eastwood MP, Luthey-Schulten Z, Wolynes PG (2004) Water in protein structure prediction. Proc Natl Acad Sci USA 101:3352–3357

    Article  PubMed  CAS  Google Scholar 

  60. Park S, Moilanen DE, Fayer MD (2008) Water dynamics – the effects of ions and nanoconfinement. J Phys Chem B 112:5279–5290

    Article  PubMed  CAS  Google Scholar 

  61. Pucadyil TJ, Mukherjee S, Chattopadhyay A (2007) Organization and dynamics of NBD-labeled lipids in membranes analyzed by fluorescence recovery after photobleaching. J Phys Chem B 111:1975–1983

    Article  PubMed  CAS  Google Scholar 

  62. Raghuraman H, Chattopadhyay A (2003) Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir 19:10332–10341

    Article  CAS  Google Scholar 

  63. Raghuraman H, Chattopadhyay A (2006) Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 83:111–121

    Article  PubMed  CAS  Google Scholar 

  64. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223

    Article  PubMed  CAS  Google Scholar 

  65. Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence, vol 2. Springer, New York, pp 199–214

    Chapter  Google Scholar 

  66. Rawat SS, Chattopadhyay A (1999) Structural transition in the micellar assembly: a fluorescence study. J Fluoresc 9:233–244

    Article  CAS  Google Scholar 

  67. Rukmini R, Rawat SS, Biswas SC, Chattopadhyay A (2001) Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J 81:2122–2134

    Article  PubMed  CAS  Google Scholar 

  68. Samanta A (2006) Dynamic Stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B 110:13704–13716

    Article  PubMed  CAS  Google Scholar 

  69. Sarkar N, Das K, Datta A, Das S, Bhattacharyya K (1996) Solvation dynamics of coumarin 480 in reverse micelles. Slow relaxation of water molecules. J Phys Chem 100:10523–10527

    Article  CAS  Google Scholar 

  70. Sarkar M, Ray JG, Sengupta PK (1996) Luminescence behaviour of 7-hydroxyflavone in aerosol OT reverse micelles: excited-state proton transfer and red-edge excitation effects. J Photochem Photobiol A 95:157–160

    Article  CAS  Google Scholar 

  71. Saxena AM, Udgaonkar JB, Krishnamoorthy G (2005) Protein dynamics control proton transfer from bulk solvent to protein interior: a case study with a green fluorescent protein. Protein Sci 14:1787–1789

    Article  PubMed  CAS  Google Scholar 

  72. Souto AL, Ito AS (2000) Tryptophan fluorescence studies of melanotropins in the amphiphile-water interface of reversed micelles. Eur Biophys J 29:38–47

    Article  PubMed  CAS  Google Scholar 

  73. Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    Article  PubMed  CAS  Google Scholar 

  74. Tanford C (1980) The hydrophobic effect: formation of biological membranes. Wiley, New York

    Google Scholar 

  75. Tanford C (1987) Amphiphile orientation: physical chemistry and biological function. Biochem Soc Trans 15:1S–7S

    PubMed  CAS  Google Scholar 

  76. Timasheff SN (2002) Protein hydration, thermodynamic binding and preferential hydration. Biochemistry 41:13473–13482

    Article  PubMed  CAS  Google Scholar 

  77. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  78. Valdez D, Le Huérou J-Y, Gindre M, Urbach W, Waks M (2001) Hydration and protein folding in water and in reverse micelles: compressibility and volume changes. Biophys J 80:2751–2760

    Article  PubMed  CAS  Google Scholar 

  79. Venables DS, Huang K, Schmuttenmaer CA (2001) Effect of reverse micelle size on the librational band of confined water and methanol. J Phys Chem B 105:9132–9138

    Article  CAS  Google Scholar 

  80. Villaín J, Prieto M (1991) Location and interaction of N-(9-anthroyloxy)-stearic acid probes incorporated in phosphatidylcholine vesicles. Chem Phys Lipids 59:9–16

    Article  Google Scholar 

  81. Wolf DE, Winiski AP, Ting AE, Bocian KM, Pagano RE (1992) Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence energy transfer. Biochemistry 31:2865–2873

    Article  PubMed  CAS  Google Scholar 

  82. Wyttenbach T, Bowers MT (2009) Hydration of biomolecules. Chem Phys Lett 480:1–16

    Article  CAS  Google Scholar 

  83. Xu F, Cross TA (1999) Water: foldase activity in catalyzing polypeptide conformational rearrangements. Proc Natl Acad Sci USA 96:9057–9061

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research and Department of Science and Technology, Government of India. S.H. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. A.C. is an Adjunct Professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi, India) and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore, India). A.C. gratefully acknowledges J.C. Bose Fellowship (Department of Science and Technology, Government of India). Some of the work described in this article was carried out by former members of A.C.’s group whose contributions are gratefully acknowledged. We thank Arunima Chaudhuri for help with Fig. 1 and members of our laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haldar, S., Chattopadhyay, A. (2012). Hydration Dynamics of Probes and Peptides in Captivity. In: Geddes, C. (eds) Reviews in Fluorescence 2010. Reviews in Fluorescence, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9828-6_7

Download citation

Publish with us

Policies and ethics