Skip to main content

Modulation of Dye Fluorescence by Photoinduced Intramolecular Charge Transfer with Resonance-Assisted Hydrogen Bond

  • Chapter
  • First Online:
Reviews in Fluorescence 2010

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2010))

Abstract

Fluorescent dyes with photoinduced intramolecular charge-transfer (ICT) process driven by β-enaminone group capable to form resonance-assisted hydrogen bond (RAHB) structure were prepared from aromatic and heterocyclic precursor molecules, such as 1-aminopyrene, 9-amino acridine, and adenine. The electronic ground and excited-state spectral properties of these new dyes are modulated by the type of substituent in the β-enaminone group and solvent interaction as well. The excited-state properties and the complex kinetics observed are results of the interplay between charge and proton transfer, together with the presence of possible conformers or tautomers associated with the keto-amine/enol-imine equilibrium. The applications of such dye derivatives as molecular probes in radical copolymerization with acrylic monomers and as reporters in silver nanoparticles dye interaction in solution are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular charge-transfer states and structure. Chem Rev 103:3899

    Article  PubMed  Google Scholar 

  2. Zachariasse KA, von der Haar T, Hebecker A, Leinhos U, Kühnle W (1993) Intramolecular charge transfer in amino-benzonitriles: requirements for dual fluorescence. Pure Appl Chem 65(8):1745–1750

    Article  CAS  Google Scholar 

  3. Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Ilichev YV, Jiang YB, Morawski O, Kühnle E (1996) Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J Photochem Photobiol A Chem 102:59–70

    Article  CAS  Google Scholar 

  4. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94: 2319–2358

    Article  CAS  Google Scholar 

  5. Sengupta PK, Kasha M (1979) Excited-state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385

    Article  CAS  Google Scholar 

  6. McMorrow D, Kasha M (1984) Intramolecular excited-state proton-transfer in 3-hydroxyflovone – hydrogen bonding solvent perturbations. J Phys Chem 88:2235–2243

    Article  CAS  Google Scholar 

  7. Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton-transfer and charge-transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc Natl Acad Sci USA 91:11968–11972

    Article  PubMed  CAS  Google Scholar 

  8. Ormson SM, Brown RG, Vollmer F, Rettig W (1994) Switching between charge-transfer and proton-transfer emission in the excited-state of a substituted 3-hydroxyflavone. J Photochem Photobiol A Chem 81:65–72

    Article  CAS  Google Scholar 

  9. Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez-Prieto F (2007) Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. J Phys Chem A 111:1814–1826

    Article  PubMed  CAS  Google Scholar 

  10. Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez-Prieto F (2008) Rotamerism, tautomerism, and excited-state intramolecular proton transfer in 2-(4′-N, N-diethylamino-2′-hydroxyphenyl)benzimidazoles: novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer. J Phys Chem A 112:376–387

    Article  PubMed  CAS  Google Scholar 

  11. Sanchez-Coronilla A, Balon M, Munoz MA, Hidalgo J, Carmona C (2008) Ground state isomerism in betacarboline hydrogen bond complexes: the charge transfer nature of its large Stokes shifted emission. Chem Phys 351:27–32

    Article  CAS  Google Scholar 

  12. Nie DB, Bian ZQ, Yu AC, Chen ZQ, Liu ZE, Huang CH (2008) Ground and excited state intramolecular proton transfer controlled intramolecular charge separation and recombination: a new type of charge and proton transfer reaction. Chem Phys 348:181–186

    Article  CAS  Google Scholar 

  13. Hsieh CC, Cheng YM, Hsu CJ, Chen KY, Chou PT (2008) Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J Phys Chem A 112:8323–8332

    Article  PubMed  CAS  Google Scholar 

  14. Varne M, Samant V, Mondal JA, Nayak SK, Ghosh HN, Palit DK (2009) Ultrafast relaxation dynamics of the excited states of 1-amino-and 1-(N, N-dimethylamino)fluoren-9-ones. ChemPhysChem 10:2979–2994

    Article  PubMed  CAS  Google Scholar 

  15. Mohammed OF, Kwon OH, Othon CM, Zewail AH (2009) Charge transfer assisted by collective hydrogen-bonding dynamics. Angew Chem Intern Ed 48:6251–6256

    Article  CAS  Google Scholar 

  16. Cukier RI, Nocera DG (1998) Proton-coupled electron transfer. Annu Rev Chem 49:337–369

    Article  CAS  Google Scholar 

  17. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  18. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Covalent nature of the strong homonuclear hydrogen-bond: study of the O–H···O system by crystal-struture correlation methods. J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  19. Bertolasi V, Gilli P, Ferretti V, Gilli G (1995) Intermolecular N–H···O hydrogen bonds assisted by resonance. Heteroconjugated systems as hydrogen-bond-strengthening functional groups. Acta Cryst B 51:1004–1015

    Article  Google Scholar 

  20. Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) Evidence for intramolecular N–H···O resonance-assisted hydrogen bonding in β-enaminones e related heterodynes. A combined crystal-structural, IR and NMR spectroscopic, and quantum-mechanical investigation. J Am Chem Soc 122: 10405–10417

    Article  CAS  Google Scholar 

  21. Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems. J Am Chem Soc 126:3845–3855

    Article  PubMed  CAS  Google Scholar 

  22. Bertolasi V, Pretto L, Ferretti V, Gilli P, Gilli G (2006) Interplay between steric and electronic factors in determining the strength of intramolecular N–H···O resonance-assisted hydrogen bonds in β-enaminones. Acta Cryst B62:1112–1120

    CAS  Google Scholar 

  23. Pereira RV, Gehlen MH (2005) Excited-state intramolecular charge transfer in 9-aminoacridine derivative. J Phys Chem A 109:5978–5983

    Article  PubMed  CAS  Google Scholar 

  24. Pereira RV, Gehlen MH (2006) Photoinduced intramolecular charge transfer in 9-aminoacridinium derivatives assisted by intramolecular H-bond. J Phys Chem A 110:7539–7546

    Article  PubMed  CAS  Google Scholar 

  25. Pereira RV, Gehlen MH (2006) H-bonding assisted intramolecular charge transfer in 1-aminopyrene derivatives. Chem Phys Lett 426:311–317

    Article  CAS  Google Scholar 

  26. Misra R, Mandal A, Mukhopadhyay M, Maity DK, Bhattacharyya SP (2009) Spectral signatures of intramolecular charge transfer process in β-enaminones: a combined experimental and theoretical analysis. J Phys Chem B 113:10779–10791

    Article  PubMed  CAS  Google Scholar 

  27. Glasbeek M, Zhang H (2004) Femtosecond studies of salvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chem Rev 104:1929–1954

    Article  PubMed  CAS  Google Scholar 

  28. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer New York, NY

    Google Scholar 

  29. Yang JS, Chiou SY, Liau KLJ (2002) Am Chem Soc 124:2518

    Article  CAS  Google Scholar 

  30. Oliveira HPM, Camargo AJ, de Macedo LGM, Gehlen MH, da Silva ABFJ (2004) Mol Struct 674:213

    CAS  Google Scholar 

  31. Callis PR (1983) Electronic states and luminescence of nucleic acid systems. Annu Rev Phys Chem 34:329–357

    Article  CAS  Google Scholar 

  32. Serrano-Andrés L, Merchán M, Borin AC (2006) Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc Acad Natl Soc 103:8691–8696

    Article  Google Scholar 

  33. Stazger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A (2006) Primary processes underlying the photostability of isolated DNA bases: adenine. Proc Acad Natl Soc 103:10196–10201

    Article  Google Scholar 

  34. Serrano-Andrés L, Merchán M, Borin AC (2006) A three-state model for the photophysics os adenine. Chem Eur J 12:6559–6571

    Article  PubMed  Google Scholar 

  35. Perun S, Sobolewski W, Domcke W (2005) Photostability of 9H-adenine: mechanisms of radiationless deactivation of the lowest excited singlet states. Chem Phys 313:107–112

    Article  CAS  Google Scholar 

  36. Marian CMJ (2005) A new pathway for the rapid decay of electronically excited adenine. Chem Phys 122:104314–104314-13

    Google Scholar 

  37. Pancur T, Schwalb NK, Renth F, Temps F (2005) Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine: experimental evidence for the πσ* state? Chem Phys 313:199–212

    Article  CAS  Google Scholar 

  38. Pereira RV, Gehlen MH (2007) Polymerization and conformational transition of poly(methacrylic acid) probed by electronic spectroscopy of aminoacridines. Macromolecules 40:2219–2223

    Article  CAS  Google Scholar 

  39. Pereira RV, Ferreira APG, Gehlen MH (2008) Fluorescent probes with malononitrile side group in methyl methacrylate copolymers. J Photochem Photobiol A Chem 198:69–74

    Article  CAS  Google Scholar 

  40. Pereira RV, Gehlen MH (2006) Spectroscopy of auramine fluorescent probes free and bound to poly(methacrylic acid). J Phys Chem B 110:6537–6542

    Article  PubMed  CAS  Google Scholar 

  41. Loufty RO (1981) High-conversion polymerization fluorescence probes. 1. Polymerization of methyl methacrylate. Macromolecules 14:270–275

    Article  Google Scholar 

  42. Pankasem S, Biscoglio M, Thomas JK (2000) Photophysics of pyrenyl acrylic acid and its methyl ester. A spectroscopic method to monitor polymerization and surface properties. Langmuir 16:3620–3625

    Article  CAS  Google Scholar 

  43. Paczkowski J, Neckers DC (1991) Twisted intramolecular charge-transfer phenomenon as a quantitative probe of polymerization kinetics. Macromolecules 24:3013–3016

    Article  CAS  Google Scholar 

  44. Olea AF, Thomas JK (1989) Fluorescence studies of the conformational changes of poly(methacrylic acid) with pH. Macromolecules 22:1165–1169

    Article  CAS  Google Scholar 

  45. Jones G II, Rahman MA (1994) Fluorescence properties of coumarin laser dyes in aqueous polymer media: chromophore isolation in poly(methacrylic acid) hypercoils. J Phys Chem 98:13028–13037

    Article  CAS  Google Scholar 

  46. Bednár B, Morawetz H, Shafer JA (1985) Kinetics of the conformational transition of poly(methacrylic acid) after changes of its degree of ionization. Macromolecules 18:1940–1944

    Article  Google Scholar 

  47. Lakowicz JR (2001) Radiative decay engineering. Anal Biochem 298:1–24

    Article  PubMed  CAS  Google Scholar 

  48. Aslan K, Cryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  PubMed  CAS  Google Scholar 

  49. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654

    Article  PubMed  CAS  Google Scholar 

  50. Machulek Junior A, De Oliveira HPM, Gehlen MH (2003) Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid stabilizing agent and the effect of silver nanopartilces on the photophysical properties of cationic dyes. Photochem Photobiol Sci 2:921–925

    Article  PubMed  CAS  Google Scholar 

  51. Sabatini CA, Pereira RV, Gehlen MH (2007) Fluorescence modulation of acridine and ­coumarin dyes by silver nanoparticles. J Fluoresc 17:377–382

    Article  PubMed  CAS  Google Scholar 

  52. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brazilian Science Foundation FAPESP and CNPq for financial support. ERS and CAS are graduate fellows of CAPES. RVP thanks FAPESP for postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo H. Gehlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gehlen, M.H., Simas, E.R., Pereira, R.V., Sabatini, C.A. (2012). Modulation of Dye Fluorescence by Photoinduced Intramolecular Charge Transfer with Resonance-Assisted Hydrogen Bond. In: Geddes, C. (eds) Reviews in Fluorescence 2010. Reviews in Fluorescence, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9828-6_6

Download citation

Publish with us

Policies and ethics