Skip to main content

Optimal Conditions for Live Cell Microscopy and Raster Image Correlation Spectroscopy

  • Chapter
  • First Online:
Reviews in Fluorescence 2010

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2010))

Abstract

Live cell microscopy is now commonplace across all fields of the life sciences, as well as, many of the physical sciences. In order to properly study physiological processing within living cells, tissues, or organisms it is crucial that viability of the sample takes the forefront as the most important aspect of the experiments. If samples are subject to high levels of light, phototoxicity can alter the very physiological processes under investigation. In order to minimize damage to the sample it is crucial to have as sensitive a microscope platform as possible so that light impact on the sample will be minimized. In order to minimize this impact, many aspects have to be kept in mind to maintain the sample and protect it from phototoxicity such as (1) keeping the cells in a favorable environment; (2) using transmitted light techniques when possible and carefully selecting fluorescent dyes; (3) using low light densities of optimal wavelengths to image; (4) optimizing the light path for maximal efficiency; and (5) using sensitive detectors. These aspects are discussed in detail with suggestions how to maximize your sample viability while performing live cell microscopy. Many researchers want to measure submicroscopic molecular dynamics in living samples. One novel technique that has been recently developed for this purpose is raster image correlation spectroscopy (RICS). RICS was developed to measure molecular dynamics, concentrations, and intermolecular interactions. It has the advantage over other dynamic fluorescence measurements in that it only requires very low laser intensities to measure molecular dynamics. Measuring dynamics using other techniques often requires the use of a high intensity of laser light to bleach, activate, or photo-switch fluorescent molecules. Therefore, RICS is ideally suited for live cell microscopy. Two color cross-correlation RICS, ccRICS, is even more powerful determining if two proteins are moving together and determining the concentration and dynamics of the protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldman RD, Spector DL (2005) Live Cell Imaging: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  2. Haraguchi T (2002) Live cell imaging: approaches for studying protein dynamics in living cells. Cell Struct Funct 27:333–334

    Article  PubMed  CAS  Google Scholar 

  3. Day RN, Schaufele F (2005) Imaging molecular interactions in living cells. Mol Endocrinol 19:1675–1686

    Article  PubMed  CAS  Google Scholar 

  4. Daily ME, Manders E, Soll DR, Terasaki M (2006) Confocal Microscopy of Living Cells. In: Pawley J (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 381–403

    Chapter  Google Scholar 

  5. Wang Y, Shyy JY, Chien S (2008) Fluorescence Proteins, Live-Cell Imaging, and Mechanobiology: Seeing Is Believing. Annu Rev Biomed Eng 10:1–38

    Article  PubMed  Google Scholar 

  6. Maintaining Live Cell on the Microscope Stage (2008) http://www.microscopyu.com/articles/livecellimaging/livecellmaintenance.html. Accessed 2008

  7. Naffar-Abu-Amara S, Shay T, Galun M et al (2008) Identification of novel pro-migratory, cancer-associated genes using quantitative, microscopy-based screening. PLoS One 3:e1457

    Article  PubMed  Google Scholar 

  8. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy – tips and tools. J Cell Sci 122:753–767

    Article  PubMed  CAS  Google Scholar 

  9. Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures. EXS 96:131–157

    PubMed  CAS  Google Scholar 

  10. Hoebe RA, Van Oven CH, Gadella TW Jr, Dhonukshe PB, Van Noorden CJ, Manders EM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253

    Article  PubMed  CAS  Google Scholar 

  11. Nishigaki T, Wood CD, Shiba K, Baba SA, Darszon A (2006) Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging. Biotechniques 41:191–197

    Article  PubMed  CAS  Google Scholar 

  12. Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89: 1317–1327

    Article  PubMed  CAS  Google Scholar 

  13. Digman MA, Wiseman PW, Horwitz AR, Gratton E (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96:707–716

    Article  PubMed  CAS  Google Scholar 

  14. Heinze KG, Costantino S, De Koninck P, Wiseman PW (2009) Beyond photobleaching, laser illumination unbinds fluorescent proteins. J Phys Chem B 113:5225–5233

    Article  PubMed  CAS  Google Scholar 

  15. Culture Chambers for Live-Cell Imaging (2008) http://www.microscopyu.com/articles/livecellimaging/culturechambers.html. Accessed 2008

  16. Bogdanov AM, Bogdanova EA, Chudakov DM, Gorodnicheva TV, Lukyanov S, Lukyanov KA (2009) Cell culture medium affects GFP photostability: a solution. Nat Methods 6: 859–860

    Article  PubMed  CAS  Google Scholar 

  17. Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46:265–274

    PubMed  CAS  Google Scholar 

  18. Light Sources for Optical Microscopy (2003) http://micro.magnet.fsu.edu/primer/anatomy/sources.html. Accessed 2003

  19. Albeanu DF, Soucy E, Sato TF, Meister M, Murthy VN (2008) LED Arrays as Cost Effective and Efficient Light Sources for Widefield Microscopy. PLoS One 3:e2146

    Article  PubMed  Google Scholar 

  20. Cole RW, Turner JN (2008) Light-emitting diodes are better illumination sources for biological microscopy than conventional sources. Microsc Microanal 14:243–250

    PubMed  CAS  Google Scholar 

  21. Brown CM (2007) Fluorescence microscopy–avoiding the pitfalls. J Cell Sci 120:1703–1705

    Article  PubMed  CAS  Google Scholar 

  22. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  PubMed  CAS  Google Scholar 

  23. Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4:81–86

    Article  PubMed  CAS  Google Scholar 

  24. De AK, Goswami D (2009) A systematic study on fluorescence enhancement under single-photon pulsed illumination. J Fluoresc 19:931–937

    Article  PubMed  Google Scholar 

  25. Borlinghaus RT (2006) MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching. Microsc Res Tech 69:689–692

    Article  PubMed  CAS  Google Scholar 

  26. Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159

    Article  PubMed  CAS  Google Scholar 

  27. Image Brightness (2009) http://www.olympusmicro.com/primer/anatomy/imagebrightness.html. Accessed 2009

  28. Spring KR (2007) Cameras for digital microscopy. Methods Cell Biol 81:171–186

    Article  PubMed  Google Scholar 

  29. Topic Introduction CCD Cameras for Fluorescence Imaging of Living Cells Wendy C. Salmon and Jennifer C. Waters, Cold Spring Harb Protoc; 2011; doi:10.1101/pdb.top113

    Google Scholar 

  30. Electronic Imaging Detectors (2005) http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagingdetectors.html. Accessed 2005

  31. Knight MM, Roberts SR, Lee DA, Bader DL (2003) Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am J Physiol Cell Physiol 284:C1083–C1089

    PubMed  CAS  Google Scholar 

  32. Swedlow JR, Platani M (2002) Live cell imaging using wide-field microscopy and deconvolution. Cell Struct Funct 27:335–341

    Article  PubMed  Google Scholar 

  33. Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75

    PubMed  Google Scholar 

  34. Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229:78–91

    Article  PubMed  CAS  Google Scholar 

  35. Dobrucki JW, Feret D, Noatynska A (2007) Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for FRAP studies. Biophys J 93: 1778–1786

    Article  PubMed  CAS  Google Scholar 

  36. Huang B (2010) Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol 14:10–14

    Article  PubMed  CAS  Google Scholar 

  37. Brown CM, Petersen NO (1998) An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane. J Cell Sci 111(Pt 2):271–281

    PubMed  CAS  Google Scholar 

  38. Petersen NO, Hoddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146

    Article  PubMed  CAS  Google Scholar 

  39. Wiseman PW, Brown CM, Webb DJ et al (2004) Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy. Journal of Cell Science 117:5521–5534

    Article  PubMed  CAS  Google Scholar 

  40. Wiseman PW, Capani F, Squier JA, Martone ME (2002) Counting dendritic spines in brain tissue slices by image correlation spectroscopy analysis. J Microsc 205:177–186

    Article  PubMed  CAS  Google Scholar 

  41. Wiseman PW, Hoddelius P, Petersen NO, Magnusson KE (1997) Aggregation of PDGF-beta receptors in human skin fibroblasts: characterization by image correlation spectroscopy (ICS). FEBS Lett 401:43–48

    Article  PubMed  CAS  Google Scholar 

  42. Wiseman PW, Petersen NO (1999) Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J 76:963–977

    Article  PubMed  CAS  Google Scholar 

  43. Wiseman PW, Squier JA, Ellisman MH, Wilson KR (2000) Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 200:14–25

    Article  PubMed  CAS  Google Scholar 

  44. Brown CM, Petersen NO (1999) Free clathrin triskelions are required for the stability of clathrin-associated adaptor protein (AP-2) coated pit nucleation sites. Biochem Cell Biol 77:439–448

    Article  PubMed  CAS  Google Scholar 

  45. Brown CM, Roth MG, Henis YI, Petersen NO (1999) An internalization-competent influenza hemagglutinin mutant causes the redistribution of AP-2 to existing coated pits and is colocalized with AP-2 in clathrin free clusters. Biochemistry 38:15166–15173

    Article  PubMed  CAS  Google Scholar 

  46. Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    Article  PubMed  CAS  Google Scholar 

  47. Chen Y (1999) Analysis and applications of fluorecence fluctuation spectroscopy. PhD Thesis 1999

    Google Scholar 

  48. Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4:e5041

    Article  PubMed  Google Scholar 

  49. Digman MA, Brown CM, Horwitz AR, Mantulin WW, Gratton E (2008) Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J 94:2819–2831

    Article  PubMed  CAS  Google Scholar 

  50. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  PubMed  CAS  Google Scholar 

  51. Digman MA, Gratton E (2009) Analysis of diffusion and binding in cells using the RICS approach. Microsc Res Tech 72:323–332

    Article  PubMed  Google Scholar 

  52. Vendelin M, Birkedal R (2008) Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 295:C1302–C1315

    Article  PubMed  CAS  Google Scholar 

  53. Gielen E, Smisdom N, vandeVen M et al (2009) Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. Langmuir 25:5209–5218

    Article  PubMed  CAS  Google Scholar 

  54. Stack RF, Bayles CJ, Girard AM, Martin K, Opansky C, Schulz K, Cole RW (2011) Quality assurance testing for modern optical imaging systems. Microsc Microanal.17:598–606.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to the lab of Dr. John Silvius for providing the Cos7 cells expressing mEGFP. Thank you to Cory Glowinski, Alison Ostendorf, and Nan Gray for critically reading the manuscript. Thank you to the McGill Imaging Facility for providing the equipment in order to conduct these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lacoste, J., Vining, C., Zuo, D., Spurmanis, A., Brown, C.M. (2012). Optimal Conditions for Live Cell Microscopy and Raster Image Correlation Spectroscopy. In: Geddes, C. (eds) Reviews in Fluorescence 2010. Reviews in Fluorescence, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9828-6_12

Download citation

Publish with us

Policies and ethics