Advertisement

Label-Free Fluorescent Sensors Based on Functional Nucleic Acids

Chapter
Part of the Reviews in Fluorescence book series (RFLU, volume 2010)

Abstract

Functional nucleic acids (FNAs), evolved in vitro from nucleic acid libraries by combinatory processes, are a general platform to design sensors for a variety of targets and analytes of interest. Among the developments in this area, label-free fluorescent sensors based on FNAs received much attention recently because they do not require any modifications on the FNAs and can most preserve the activities of the FNAs. In addition, the use of FNAs consist of only natural nucleotides and no modifications for sensor designs may facilitate the encoding of the sensors in living system for imaging and sensing applications. In this chapter, several unique sensing platforms for label-free fluorescent FNA sensors have been reviewed, including label-free fluorescent sensors based on the intercalation of fluorescent dyes in dsDNA, on “turning-on” of the non-fluorescent dyes that are aptamer-dependent, on the binding of a fluorophore to an abasic or vacant site, or on a conjugated polymer whose fluorescence depends on the FNA conformations.

Keywords

Malachite Green Fluorescence Enhancement Fluorescent Sensor Sensor Design Abasic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank the U.S. Department of Energy (DE-FG02-08ER64568), the National Institutes of Health (ES16865) and the National Science Foundation (CTS-0120978) for financial support.

References

  1. 1.
    Tsien RY (1993) Fluorescent and photochemical probes of dynamic biochemical signals inside living cells. In: Czarnik AW (ed) Fluorescent Chemosensors for Ion and Molecule Recognization. American Chemical Society, Washington, DC, p 130–146CrossRefGoogle Scholar
  2. 2.
    Czarnik AW (1995) Desperately seeking sensors. Chem Biol 2(7):423–428PubMedCrossRefGoogle Scholar
  3. 3.
    deSilva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566CrossRefGoogle Scholar
  4. 4.
    Ligler FS, Taitt CA (2002) Optical biosensors:present and future. Elsevier Science Ligler Frances S, AmsterdamGoogle Scholar
  5. 5.
    Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11–12):549–578PubMedCrossRefGoogle Scholar
  6. 6.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998PubMedCrossRefGoogle Scholar
  7. 7.
    Li Y, Lu Y (2009) Functional nucleic acids for sensing and other analytical applications. Springer, New YorkGoogle Scholar
  8. 8.
    Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468PubMedCrossRefGoogle Scholar
  9. 9.
    Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1(4):223–229PubMedCrossRefGoogle Scholar
  10. 10.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510PubMedCrossRefGoogle Scholar
  11. 11.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822PubMedCrossRefGoogle Scholar
  12. 12.
    Lee JF, Hesselberth JR, Meyers LA, Ellington AD (2004) Aptamer database. Nucleic Acids Res 32(Database):D95–D100PubMedCrossRefGoogle Scholar
  13. 13.
    Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8(5):547–553PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14(4):343–354PubMedCrossRefGoogle Scholar
  15. 15.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem Int Ed Engl 46(34):6408–6418PubMedCrossRefGoogle Scholar
  16. 16.
    Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19(2):412–417PubMedCrossRefGoogle Scholar
  17. 17.
    Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13(1):31–39PubMedCrossRefGoogle Scholar
  18. 18.
    Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10(3):272–281PubMedCrossRefGoogle Scholar
  19. 19.
    Liu J, Lu Y (2006) Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol Biol 335:275–288, Fluorescent Energy Transfer Nucleic Acid ProbesPubMedGoogle Scholar
  20. 20.
    Mok W, Li Y (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8(11):7050–7084CrossRefGoogle Scholar
  21. 21.
    Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37(6):1153–1165PubMedCrossRefGoogle Scholar
  22. 22.
    Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC, Trends Anal Chem 27(2):108–117CrossRefGoogle Scholar
  23. 23.
    Jiang Y, Fang X, Bai C (2004) Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 76(17):5230–5235PubMedCrossRefGoogle Scholar
  24. 24.
    Byon HR, Kim S, Choi HC (2008) Label-free Biomolecular Detection Using Carbon Nanotube Field Effect Transistors. NANO 3(6):415–431CrossRefGoogle Scholar
  25. 25.
    Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264CrossRefGoogle Scholar
  26. 26.
    Maehashi K, Matsumoto K (2009) Label-free electrical detection using carbon nanotube-based biosensors. Sensors 9(7):5368–5378CrossRefGoogle Scholar
  27. 27.
    Persil O, Hud NV (2007) Harnessing DNA intercalation. Trends Biotechnol 25(10):433–436PubMedCrossRefGoogle Scholar
  28. 28.
    Ihara T, Uemura A, Futamura A, Shimizu M, Baba N, Nishizawa S, Teramae N, Jyo A (2009) Cooperative DNA probing using a beta -cyclodextrin-DNA conjugate and a nucleobase-specific fluorescent ligand. J Am Chem Soc 131(4):1386–1387PubMedCrossRefGoogle Scholar
  29. 29.
    Prunell A, Strauss F, Leblanc B (1977) Photographic quantitation of DNA in gel electrophoresis. Anal Biochem 78(1):57–65PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrari D, Peracchi A (2002) A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe. Nucleic Acids Res 30(20):e112/111–e112/119CrossRefGoogle Scholar
  31. 31.
    Li B, Wei H, Dong S (2007) Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chem Comm 1:73–75PubMedCrossRefGoogle Scholar
  32. 32.
    Liu B, Dan TTT, Bazan GC (2007) Collective response from a cationic tetrahedral fluorene for label-free DNA detection. Adv Funct Mater 17(14):2432–2438CrossRefGoogle Scholar
  33. 33.
    Wang Y, Liu B (2008) ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene. Analyst 133(11):1593–1598PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Liu B (2007) Label-free single-nucleotide polymorphism detection using a cationic tetrahedralfluorene and silica nanoparticles. Anal Chem 79(18):7214–7220PubMedCrossRefGoogle Scholar
  35. 35.
    Wood AEIV, Bishop GR (2004) Probing the structure of DNA aptamers with a classic heterocycle. Molecules 9(3):67–85PubMedCrossRefGoogle Scholar
  36. 36.
    Jenkins Y, Friedman AE, Turro NJ, Barton JK (1992) Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry 31(44):10809–10816PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Jiang Y, Zhou C, Fang X (2005) Aptamer-based ATP assay using a luminescent light switching complex. Anal Chem 77(11):3542–3546PubMedCrossRefGoogle Scholar
  38. 38.
    Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2):656–665PubMedCrossRefGoogle Scholar
  39. 39.
    Choi MS, Yoon M, Baeg J-O, Kim J (2009) Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex. Chem Comm 47:7419–7421PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou C, Jiang Y, Hou S, Ma B, Fang X, Li M (2006) Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. Anal Bioanal Chem 384(5):1175–1180PubMedCrossRefGoogle Scholar
  41. 41.
    Chiang C-K, Huang C-C, Liu C-W, Chang H-T (2008) Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Anal Chem 80(10):3716–3721PubMedCrossRefGoogle Scholar
  42. 42.
    Lin Y-H, Tseng W-L (2009) Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chem Comm 43:6619–6621PubMedCrossRefGoogle Scholar
  43. 43.
    Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6(5):331–338PubMedCrossRefGoogle Scholar
  44. 44.
    White CE, Argauer RJ (1970) Fluorescence Analysis; a practical approach. Marcel Dekker, New YorkGoogle Scholar
  45. 45.
    Grate D, Wilson C (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci USA 96(11):6131–6136PubMedCrossRefGoogle Scholar
  46. 46.
    Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125(48):14716–14717PubMedCrossRefGoogle Scholar
  47. 47.
    Flinders J, DeFina SC, Brackett DM, Baugh C, Wilson C, Dieckmann T (2004) Recognition of planar and nonplanar ligands in the malachite green – RNA aptamer complex. Chembiochem 5(1):62–72PubMedCrossRefGoogle Scholar
  48. 48.
    Nguyen DH, Dieckmann T, Colvin ME, Fink WH (2004) Dynamics studies of a malachite green-RNA complex revealing the origin of the Red-shift and energetic contributions of stacking interactions. J Phys Chem B 108(4):1279–1286CrossRefGoogle Scholar
  49. 49.
    Stojanovic MN, Kolpashchikov DM (2004) Modular aptameric sensors. J Am Chem Soc 126(30):9266–9270PubMedCrossRefGoogle Scholar
  50. 50.
    Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125(16): 4771–4778PubMedCrossRefGoogle Scholar
  51. 51.
    Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44(7):1061–1065CrossRefGoogle Scholar
  52. 52.
    Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94CrossRefGoogle Scholar
  53. 53.
    Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131(20):6944–6945PubMedCrossRefGoogle Scholar
  54. 54.
    Xu W, Lu Y (2010) Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 82(2):574–578PubMedCrossRefGoogle Scholar
  55. 55.
    Kolpashchikov DM (2005) Binary malachite green aptamer for fluorescent detection of nucleic acids. J Am Chem Soc 127(36):12442–12443PubMedCrossRefGoogle Scholar
  56. 56.
    Sando S, Narita A, Aoyama Y (2007) Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. Chembiochem 8(15):1795–1803PubMedCrossRefGoogle Scholar
  57. 57.
    Afonin KA, Danilov EO, Novikova IV, Leontis NB (2008) TokenRNA: a new type of sequence-specific, label-free fluorescent biosensor for folded RNA molecules. Chembiochem 9(12):1902–1905PubMedCrossRefGoogle Scholar
  58. 58.
    Hirabayashi M, Ohashi H, Kubo T (2008) Experimental analysis of the basic idea on the transcription-based diagnostic automata controlled by programmed molecules. Nat Comput 7(3):403–421CrossRefGoogle Scholar
  59. 59.
    Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-quadruplex. Angew Chem Int Ed 46(48): 9305–9307CrossRefGoogle Scholar
  60. 60.
    Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131(42):15352–15357PubMedCrossRefGoogle Scholar
  61. 61.
    Xiang Y, Wang Z, Xing H, Wong NY, Lu Y (2010) Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach. Anal Chem 82(10):4122–4129PubMedCrossRefGoogle Scholar
  62. 62.
    Xu Z, Morita K, Sato Y, Dai Q, Nishizawa S, Teramae N (2009) Label-free aptamer-based sensor using abasic site-containing DNA and a nucleobase-specific fluorescent ligand. Chem Comm 42:6445–6447PubMedCrossRefGoogle Scholar
  63. 63.
    Xu Z, Sato Y, Nishizawa S, Teramae N (2009) Signal-Off and signal-on design for a label-free aptasensor based on target-induced self-assembly and abasic-site-binding ligands. Chem Eur J 15(40):10375–10378PubMedCrossRefGoogle Scholar
  64. 64.
    Yoshimoto K, Nishizawa S, Minagawa M, Teramae N (2003) Use of abasic site-containing DNA strands for nucleobase recognition in water. J Am Chem Soc 125(30):8982–8983PubMedCrossRefGoogle Scholar
  65. 65.
    Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122(42):10466–10467CrossRefGoogle Scholar
  66. 66.
    Li J, Zheng W, Kwon AH, Lu Y (2000) In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res 28(2):481–488PubMedCrossRefGoogle Scholar
  67. 67.
    Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643PubMedCrossRefGoogle Scholar
  68. 68.
    Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305PubMedCrossRefGoogle Scholar
  69. 69.
    Nagraj N, Liu J, Sterling S, Wu J, Lu Y (2009) DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Cheml Comm 27:4103–4105CrossRefGoogle Scholar
  70. 70.
    Li N, Mei L, Xiang Y, Tong A, Nishizawa S, Teramae N (2007) Fluorescence detection of single-nucleotide polymorphisms with two simple and low cost methods: A double-DNA-probe method and a bulge form method. Anal Chim Acta 597(1):97–102PubMedCrossRefGoogle Scholar
  71. 71.
    Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci USA 104(7):2056–2061PubMedCrossRefGoogle Scholar
  72. 72.
    Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130(43):14217–14226PubMedCrossRefGoogle Scholar
  73. 73.
    Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43(33):4300–4302CrossRefGoogle Scholar
  74. 74.
    Wang Z, Lee JH, Lu Y (2008) Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem Comm 45:6005–6007PubMedCrossRefGoogle Scholar
  75. 75.
    Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107(4):1339–1386PubMedCrossRefGoogle Scholar
  76. 76.
    Dore K, Dubus S, Ho HA, Levesque I, Brunette M, Corbeil G, Boissinot M, Boivin G, Bergeron MG, Boudreau D, Leclerc M (2004) Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J Am Chem Soc 126(13): 4240–4244PubMedCrossRefGoogle Scholar
  77. 77.
    Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126(5):1384–1387PubMedCrossRefGoogle Scholar
  78. 78.
    Ho HA, Bera-Aberem M, Leclerc M (2005) Optical sensors based on hybrid DNA/conjugated polymer complexes. Chem Eur J 11(6):1718–1724PubMedCrossRefGoogle Scholar
  79. 79.
    Pu F, Huang Z, Hu D, Ren J, Wang S, Qu X (2009) Sensitive, selective and label-free protein detection using a smart polymeric transducer and aptamer/ligand system. Chem Comm 47:7357–7359PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Y, Rando RR (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2(5):281–290PubMedCrossRefGoogle Scholar
  81. 81.
    Li B, Qin C, Li T, Wang L, Dong S (2009) Flourescent switch constructed based on hemin-sensitive anionic conjugated polymer and its applications in DNA-related sensors. Anal Chem 81(9):3544–3550PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng X, Bing T, Liu X, Shangguan D (2009) A label-free fluorescence sensor for probing the interaction of oligonucleotides with target molecules. Anal Chim Acta 633(1):97–102PubMedCrossRefGoogle Scholar
  83. 83.
    Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79(11):4120–4125PubMedCrossRefGoogle Scholar
  84. 84.
    Wang Z, Lu Y (2009) Functional DNA directed assembly of nanomaterials for biosensing. J Mat Chem 19(13):1788–1798CrossRefGoogle Scholar
  85. 85.
    Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20(17):3263–3267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations