Helical Nanostructures: Synthesis and Potential Applications



In nature, three-dimensional (3D) helical structure is the most fundamental structural configuration of DNAs, proteins, and bio-functional groups, such as cytoplasm and periplasm [1]. Synthetically, many 3D helical structures with micro- and nano-features have been fabricated from a number of inorganic materials. Typical examples include ZnO nanohelices/nanosprings [2–7], SiO2 nanohelices [8, 9], carbon-based nano-/microcoils [10–12], and some other nanohelices based on III–V and II–VI semiconductors [13–16]. Because of their nanoscale 3D spiral symmetric geometry, as well as unique mechanical, electrical, and electromagnetic properties, helically nanostructured materials are attracting considerable attention and have potential applications in electronics, optics, nano- and micro-electromechanical system (NEMS and MEMS), energy and environment-related technologies, and biomedicine.


Typical Scanning Electron Microscopy Image Pitch Distance SiO2 Core Glance Angle Deposition Tungsten Hexacarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the contributors for the materials used in this chapter, including Dr Z.L. Wang, Dr Y. Ding, Dr W.J. Mai, and Dr R.S. Yang. The authors also thank the financial support from the University of Connecticut New Faculty start-up funds, the University of Connecticut large faculty research grant, and the Department of Energy. Acknowledgment is also made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this work.


  1. 1.
    T. Murata, I. Yamato, Y. Kakinuma, A.G.W. Leslie, J.E. Walker, Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005)CrossRefGoogle Scholar
  2. 2.
    P.X. Gao, Y. Ding, W.J. Mai, W. L. Hughes, C.S. Lao, Z.L. Wang, Conversion of zinc oxide nanobelts into superlattice structured nanohelices. Science 309, 1700–1704 (2005)CrossRefGoogle Scholar
  3. 3.
    P.X. Gao, Z.L. Wang, High-yield synthesis of single-crystal nanosprings of ZnO. Small 1, 945–948 (2005)CrossRefGoogle Scholar
  4. 4.
    P.X. Gao, W.J. Mai, Z.L. Wang, Superelasticity and nanofracture of ZnO nanohelix. Nano Lett. 6, 2536–2543 (2006)CrossRefGoogle Scholar
  5. 5.
    P.X. Gao, Y. Ding, Z.L. Wang, Electronic transport in superlattice-structured ZnO nanohelix. Nano Lett. 9(1), 137–143 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Yang, Y. Ding, Z.L. Wang, Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett. 4, 1309–1312 (2004)CrossRefGoogle Scholar
  7. 7.
    X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003)CrossRefGoogle Scholar
  8. 8.
    L. Wang, D. Major, P. Paga, D. Zhang, M.G. Norton, D.N. Mcllroy, High yield synthesis and lithography of silica-based nanospring mats. Nanotechnology 17, S298–S303 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Delclos, C. Aime, E. Pouget, A. Brizard, I. Huc, M. Delville, R. Oda, Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Lett. 8, 1929–1935 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Chen, S. Yang, S. Motojima, M. Ichihara, Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-based alloy catalysts on glass substrates. Mater. Lett. 59, 854–858 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Cheng, X. Zhang, J. Tu, X. Tao, Y. Ye, F. Liu, Catalytic chemical vapor deposition synthesis of helical carbon nanotubes and triple helices carbon nanostructure. Mater. Chem. Phys. 95, 12–15 (2006)CrossRefGoogle Scholar
  12. 12.
    J.H. Xia, X. Jiang, C.L. Jia, C. Dong, Hexahedral nanocementites catalyzing the growth of carbon nanohelices. Appl. Phys. Lett. 92, 063121 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Zhan, Y. Bando, J Hu, F. Xu, D. Golberg, Unconventional gallium oxide nanowires. Small 8–9, 883–888 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Wang, F. Bai, Helical CdS nanowire ropes by simple aqueous chemical growth. Appl. Phys. Lett. 87, 193109 (2005)CrossRefGoogle Scholar
  15. 15.
    E.D. Sone, E.R. Zubarev, S.I. Stupp, Supramolecular templating of single and double nanohelices of cadmium sulfide. Small 7, 694–697 (2005)CrossRefGoogle Scholar
  16. 16.
    G.Z. Shen, Y. Bando, C.Y. Zhi, X.L. Yuan, T. Sekiguchi, D. Golberg, Single-crystalline cubic structured InP nanosprings. Appl. Phys. Lett. 88, 243106 (2006)CrossRefGoogle Scholar
  17. 17.
    K. Robbie, D.J. Broer, M.J. Brett, Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399, 764–766 (1999)CrossRefGoogle Scholar
  18. 18.
    S.V. Kesapragada, P. Victor, O. Nalamasu, D. Gall, Nanospring pressure sensors grown by glancing angle deposition. Nano Lett. 6, 854–857 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Nakamatsu, J. Igaki, M. Nagase, T. Ichihashi, S. Matsui, Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. Microelectron. Eng. 83, 808–810 (2006)CrossRefGoogle Scholar
  20. 20.
    X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348–1351 (2004)CrossRefGoogle Scholar
  21. 21.
    W.L. Hughes, Z.L. Wang, Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126, 6703–6709 (2004)CrossRefGoogle Scholar
  22. 22.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Boudaoud, P. Patricio, Y. Couder, M. Ben Amar, Dynamics of singularities in a constrained elastic plate. Nature 407, 718–720 (2002)CrossRefGoogle Scholar
  24. 24.
    Y. Sato, F. Oba, T. Yamamoto, Y. Ikuhara, T. Sakuma, Current-voltage characteristics across (0001) twist boundaries in zinc oxide bicrystals. J. Am. Ceram. Soc. 85, 2142–2144 (2002)CrossRefGoogle Scholar
  25. 25.
    D.L. Smith, C. Mailhiot, Theory of semiconductor superlattice electronic structure. Rev. Mod. Phys. 62(1), 173–234 (1990)CrossRefGoogle Scholar
  26. 26.
    D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82(3), 485–502 (1999)CrossRefGoogle Scholar
  27. 27.
    H. Gao, X. Zhang, M. Zhou, E. Zhang, Z. Zhang, Super-uniform ZnO nanohelices synthesized via thermal evaporation. Solid State Commun. 140, 455–458 (2006)CrossRefGoogle Scholar
  28. 28.
    H.F. Zhang, C.M. Wang, L.S. Wang, Helical crystalline SiC/SiO2 core–shell nanowires. Nano Lett. 2, 941–944 (2002)CrossRefGoogle Scholar
  29. 29.
    N. Herron, J.C. Calabrese, W.E. Farneth, Y. Wang, Crystal structure and optical properties of Cd32S14(SC6H5)36-DMF4, a cluster with a 15 angstrom CdS core. Science 259, 1426–1428 (1993)CrossRefGoogle Scholar
  30. 30.
    A. Fonseca, K. Hernadi, J.B. Nagy, P. Lambin, A.A. Lucas, Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 33, 1759–1775 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Akagi, R. Tamura, M. Tsukada, Electronic structure of helically coiled cage of graphitic carbon. Phys. Rev. Lett. 74, 2307–2310 (1995)CrossRefGoogle Scholar
  32. 32.
    C. Cao, H. Du, Y. Xu, H. Zhu, T. Zhang, R. Yang, Superelastic and spring properties of Si3N4 microcoils. Adv. Mater. 20, 1738–1743 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Nath, B.A. Parkinson, Superconducting MgB2 nanohelices grown on various substrates. J. Am. Chem. Soc. 129, 11302–11303 (2007)CrossRefGoogle Scholar
  34. 34.
    Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Designing nanostructures by glancing angle deposition. Proc. SPIE 5219, 59–73 (2003)CrossRefGoogle Scholar
  35. 35.
    D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grutzmacher, Three-dimensional nanosprings for electromechanical sensors. Sens. Actuators A Phys. 130–131, 54–61 (2005)Google Scholar
  36. 36.
    J.P. Singh, D.L. Liu, D.X. Ye, R.C. Picu, T.M. Lu, G.C. Wang, Metal-coated Si springs: Nanoelectromechanical actuators. Appl. Phys. Lett. 84, 3657–3659 (2004)CrossRefGoogle Scholar
  37. 37.
    C. Daraio, V.F. Nesterenko, S. Jin, W. Wang, A.M. Rao, Impact response by a foamlike forest of coiled carbon nanotubes. J. Appl. Phys. 100, 064309 (2006)CrossRefGoogle Scholar
  38. 38.
    J. Jagadish, S.J. Pearton (eds.), Zinc Oxide Bulk, Thin Film and Nanostructures (Elsevier, Amsterdam, Netherlands, 2006)Google Scholar
  39. 39.
    U. Sahaym, M.G. Norton, Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J. Mater. Sci. 43(16), 5395–5429 (2008)CrossRefGoogle Scholar
  40. 40.
    J.G. Gibbs, Y.P. Zhao, Measurement of driving force of catalytic nanomotors in dilute hydrogen peroxide by torsion balance. Rev. Sci. Instrum. 79, 086108 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China 2011

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Biomolecular Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Chemical, Materials and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Institute of Materials Science, University of ConnecticutStorrsUSA

Personalised recommendations