Supercapacitors Based on 3D Nanostructured Electrodes

Chapter

Abstract

Climate change, the decreasing availability of fossil fuels vs. the increasing demand for them, and atmospheric pollution caused by combustion engines of automotive systems require society to move toward sustainable and renewable resources [1]. As a result, we observe an increase in renewable energy production from sun and wind, as well as the development of electric vehicles or hybrid electric vehicles with low CO2 emissions. Because the sun does not shine at night, the wind does not blow on command, and we expect to drive an autonomous car for at least a few hours, energy storage systems are starting to play a larger part in our lives [1, 2]. In response to the needs of modern society and emerging ecological concerns, it is now essential that new, low-cost, and environmentally friendly energy conversion and storage systems are found. At the forefront of these electrochemical energy storage systems are lithium–ion batteries [3, 4], fuel cells [5], solar cells, and supercapacitors (SCs) [6, 7].

Keywords

Porosity Nickel Graphite Carbide Cobalt 

References

  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Tollefson, Car industry: charging up the future. Nature 456, 436 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251 (2008)CrossRefGoogle Scholar
  5. 5.
    B. Sorensen, Hydrogen and Fuel Cells (Elsevier Academic Press, London 2005)Google Scholar
  6. 6.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer/Plenum Press, New York, NY 1999)Google Scholar
  7. 7.
    R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000)CrossRefGoogle Scholar
  8. 8.
    G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule for electrochemical energy storage and production. Nature 393, 346 (1998)CrossRefGoogle Scholar
  9. 9.
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle Scholar
  10. 10.
    R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E.S. Takeuchi, Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Armand, P. Johansson, Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821 (2008)CrossRefGoogle Scholar
  13. 13.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651 (2008)CrossRefGoogle Scholar
  14. 14.
    US Department of Energy. Basic Research Needs for Electrical Energy Storage (2007) <http://www.sc.doe.gov/bes/reports/abstracts.html#EES2007>
  15. 15.
    M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998)CrossRefGoogle Scholar
  16. 16.
    A.G. Pandolfo, A.F. Hollenkamp, Cabron properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Gogotsi (ed.), Carbon Nanomaterials (CRC Press, Boca Raton, FL, 2006)Google Scholar
  18. 18.
    E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Janes, E. Lust, Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113 (2006)CrossRefGoogle Scholar
  20. 20.
    B.D. Shanina, A.A. Konchits, S.P. Kolesnik, A.I. Veynger, A.M. Danishevskii, V.V. Popov, S.K. Gordeev, A.V. Grechinskaya, A study of nanoporous carbon obtained from ZC powders. Carbon 41, 3027 (2003)CrossRefGoogle Scholar
  21. 21.
    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian, Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta 53, 7675 (2008)CrossRefGoogle Scholar
  23. 23.
    C.M. Yang, Y.J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20 (2007)CrossRefGoogle Scholar
  24. 24.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 11, 157 (2006)Google Scholar
  25. 25.
    A.V. Murugan, K. Vijayamohanan, Nanomaterials Chemistry (Wiley-VCH GmbH & Co., Weinheim 2007)Google Scholar
  26. 26.
    P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more. Interface 17, 38 (2008)Google Scholar
  27. 27.
    G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Characterization of electrodes for super capacitors: surface area and pore size at the solid-gas and electrode solution interfaces of activated carbons. J. Electrochem. Soc. 147, 2486 (2000)CrossRefGoogle Scholar
  28. 28.
    L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880 (2001)CrossRefGoogle Scholar
  29. 29.
    L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton-selective environment in the pores of activated molecular sieving carbon electrodes. J. Phys. Chem. B 106, 10128 (2002)CrossRefGoogle Scholar
  30. 30.
    Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater. Chem. Phys. 80, 704 (2003)CrossRefGoogle Scholar
  31. 31.
    H.F. Stoeckh, Microporous carbons and their characterization: the present state of the art. Carbon 28, 1 (1990)CrossRefGoogle Scholar
  32. 32.
    J.K. Hong, J.H. Lee, S.M. Oh, Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. J. Power Sources 111, 90 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Kuroda, N. Tobori, M. Sakuraba, Y. Sato, Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. J. Power Sources 119–121, 924 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Tatsumi, K. Zaghib, H. Abe, S. Higuchi, T. Ohsaki, Y. Sawada, A modification in the preparation process of a carbon whisker for the anode performance of lithium rechargeable batteries. J. Power Sources 54, 425 (1995)CrossRefGoogle Scholar
  35. 35.
    G. Ertl, H. Knözinger, J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, vol. 1. (Wiley-VCH, Weinheim 1997)Google Scholar
  36. 36.
    H.D. Gesser, P.C. Goswami, Aerogels and related porous materials. Chem. Rev. 89, 765 (1989)CrossRefGoogle Scholar
  37. 37.
    R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989)CrossRefGoogle Scholar
  38. 38.
    B.H. Han, W.Z. Zhou, A. Sayari, Direct preparation of nanoporous carbon by nanocasting. J. Am. Chem. Soc. 125, 3444 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Taguchi, J.H. Smått, M. Lindén, Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15, 1209 (2003)CrossRefGoogle Scholar
  40. 40.
    A.H. Lu, J.H. Smått, S. Backlund, M. Lindén, Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater. 72, 59 (2004)CrossRefGoogle Scholar
  41. 41.
    H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu, D. Zhao, Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of la3d symmetry. Chem. Commun. 38, 2842 (2002)Google Scholar
  42. 42.
    K. Nakanishi, Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67 (1997)CrossRefGoogle Scholar
  43. 43.
    J.H. Smått, S.A. Schunk, M. Lindén, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354 (2003)CrossRefGoogle Scholar
  44. 44.
    A.H. Lu, J.H. Smått, M. Lindén, Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv. Funct. Mater. 15, 865 (2005)CrossRefGoogle Scholar
  45. 45.
    Z.G. Shi, Y.Q. Feng, L. Xu, S.L. Da, Preparation of porous carbon-silica composite monoliths. Carbon 41, 2668 (2003)CrossRefGoogle Scholar
  46. 46.
    Z.G. Shi, Y.Q. Feng, L. Xu, S.L. Da, M. Zhang, Synthesis of a carbon monolith with trimodal pores. Carbon 41, 2677 (2003)CrossRefGoogle Scholar
  47. 47.
    T. Kyotani, T. Nagai, S. Inoue, A. Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609 (1997)CrossRefGoogle Scholar
  48. 48.
    C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739 (1996)CrossRefGoogle Scholar
  49. 49.
    R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743 (1999)CrossRefGoogle Scholar
  50. 50.
    F. Schüth, Endo-and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 42, 3604 (2003)CrossRefGoogle Scholar
  51. 51.
    O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff, Porous silica via colloidal crystallization. Nature 389, 447 (1997)CrossRefGoogle Scholar
  52. 52.
    D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000)CrossRefGoogle Scholar
  53. 53.
    C. Yu, J. Fan, B. Tian, D. Zhao, G.D. Stucky, High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14, 1742 (2002)CrossRefGoogle Scholar
  54. 54.
    S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 429, 281 (2004)CrossRefGoogle Scholar
  55. 55.
    W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45, 1757 (2007)CrossRefGoogle Scholar
  56. 56.
    R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489 (2006)CrossRefGoogle Scholar
  57. 57.
    S. Urbonaitea, S. Wachtmeisterb, C. Mirguetc, E. Coroneld, W.Y. Zoub, S. Csillagb, G. Svenssona, EELS studies of carbide derived carbons. Carbon 45, 2047 (2007)CrossRefGoogle Scholar
  58. 58.
    Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003)CrossRefGoogle Scholar
  59. 59.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760 (2006)CrossRefGoogle Scholar
  60. 60.
    J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001)CrossRefGoogle Scholar
  61. 61.
    D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99 (1998)CrossRefGoogle Scholar
  62. 62.
    D.R. Rolison, Catalytic nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003)CrossRefGoogle Scholar
  63. 63.
    G. Lee, S. Pyun, Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. Langmuir 22, 10659 (2006)CrossRefGoogle Scholar
  64. 64.
    J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004)CrossRefGoogle Scholar
  65. 65.
    D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373 (2008)CrossRefGoogle Scholar
  66. 66.
    D.W. Wang, F. Li, H.T. Fang, M. Liu, G.Q. Lu, H.M. Cheng, Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport. J. Phys. Chem. B 110, 8570 (2006)CrossRefGoogle Scholar
  67. 67.
    W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44, 216 (2006)CrossRefGoogle Scholar
  68. 68.
    A.B. Fuertes, F. Pico, J.M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J. Power Sources 133, 329 (2004)CrossRefGoogle Scholar
  69. 69.
    H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J. Phys. Chem. C 111, 227 (2007)CrossRefGoogle Scholar
  70. 70.
    T. Morishita, Y. Soneda, T. Tsumura, M. Inagaki, Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 44, 2360 (2006)CrossRefGoogle Scholar
  71. 71.
    E. Raymundo-PiMero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498 (2006)CrossRefGoogle Scholar
  72. 72.
    C. Zhao, W. Wang, Z. Yu, H. Zhang, A. Wang, Y. Yang, Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities electronic supplementary information (ESI) available: nitrogen adsorption/desorption isotherms, textural parameters and carbon yield data for LMC materials. J. Mater. Chem. 20, 976 (2010)CrossRefGoogle Scholar
  73. 73.
    J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem. Commun. 8, 51 (2006)CrossRefGoogle Scholar
  74. 74.
    A. Dillon, K. Jones, T. Bekkedahl, C. Kiang, D. Bethune, M. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386 377 (1997)CrossRefGoogle Scholar
  75. 75.
    J. Wildoer, L. Venema, A. Rinzler, R. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998)CrossRefGoogle Scholar
  76. 76.
    Z. Ren, Z. Huang, J. Xu, J. Wang, P. Bush, M. Siegal, P. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)CrossRefGoogle Scholar
  77. 77.
    J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622 (2000)CrossRefGoogle Scholar
  78. 78.
    R. Baughman, A. Zakhidov, W. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787 (2002)CrossRefGoogle Scholar
  79. 79.
    C. Niu, E. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70 1480 (1997)CrossRefGoogle Scholar
  80. 80.
    C. Liu, A. Bard, F. Wudl, I. Weitz, J. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors. Electrochem. Solid-State Lett. 2, 577 (1999)CrossRefGoogle Scholar
  81. 81.
    C. Emmenegger, P. Mauron, A. Zuttel, C. Nutzenadel, A. Schneuwly, R. Gallay, L. Schlapbach, Carbon nanotube synthesized on metallic substrates. Appl. Surf. Sci. 162–163, 452 (2000)CrossRefGoogle Scholar
  82. 82.
    C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J. Power Sources 124, 321 (2003)CrossRefGoogle Scholar
  83. 83.
    D. Zilli, P. Bonelli, A. Cukierman, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17, 5136 (2006)CrossRefGoogle Scholar
  84. 84.
    H. Zhang, G. Cao, Y. Yang, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 18, 195607 (2007)CrossRefGoogle Scholar
  85. 85.
    Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10, A106 (2007)CrossRefGoogle Scholar
  86. 86.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362 (2004)CrossRefGoogle Scholar
  87. 87.
    G.Y. Xiong, D.Z. Wang, Z.F. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44, 969 (2006)CrossRefGoogle Scholar
  88. 88.
    H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Influence of hydrogen pretreatment condition on the morphology of Fe/Al2O3 catalyst film and growth of millimeter-long carbon nanotube array. J. Phys. Chem. C 112, 4524 (2008)CrossRefGoogle Scholar
  89. 89.
    H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Influence of ethylene and hydrogen flow rates on the wall number, crystallinity, and length of millimeter-long carbon nanotube array. J. Phys. Chem. C 112, 12706 (2008)CrossRefGoogle Scholar
  90. 90.
    G.Y. Zhang, D. Mann, L. Zhang, A. Javey, Y.M. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H.J. Dai, Ultra-high-yield growth of vertical single-walled. Carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA 102, 16141 (2005)CrossRefGoogle Scholar
  91. 91.
    Y. Murakami, S. Maruyama, Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces. Chem. Phys. Lett. 422, 575 (2006)CrossRefGoogle Scholar
  92. 92.
    L.B. Zhu, Y.Y. Sun, D.W. Hess, C.P. Wong, Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett. 6, 243 (2006)CrossRefGoogle Scholar
  93. 93.
    A. Kumar, V.L. Pushparaj, S. Kar, O. Nalamasu, P.M. Ajayan, Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett. 89, 163120 (2006)CrossRefGoogle Scholar
  94. 94.
    J. Yu, J.G. Shapter, M.R. Johnston, J.S. Quinton, J.J. Gooding, Electron-transfer characteristics of ferrocene attached to single-walled carbon nanotubes (SWCNT) arrays directly anchored to silicon(100). Electrochim. Acta 52, 6206 (2007)CrossRefGoogle Scholar
  95. 95.
    D. Nkosi, K.I. Ozoemena, self-assembled nano-arrays of single-walled carbon nanotube–octa(hydroxyethylthio)phthalocyaninatoiron(ii) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53, 2782 (2008)CrossRefGoogle Scholar
  96. 96.
    T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128, 13338 (2006)CrossRefGoogle Scholar
  97. 97.
    S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112 (2006)CrossRefGoogle Scholar
  98. 98.
    H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.N. Gu, Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils. Carbon 46, 822 (2008)CrossRefGoogle Scholar
  99. 99.
    H. Zhang, G.P. Cao, Y.S. Yang, Z.N. Gu, Comparision between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc. 155, K19 (2008)CrossRefGoogle Scholar
  100. 100.
    P. Ayala, A. Grüneis, T. Gemming, B. Büchner, M.H. Rümmeli, D. Grimm, J. Schumann, R. Kaltofen, F.L. Freire Jr., H.D. Fonseca Filho, T. Pichler, Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chem. Mater. 19, 6131 (2007)CrossRefGoogle Scholar
  101. 101.
    I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19 (2009)CrossRefGoogle Scholar
  102. 102.
    S.W. Lee, B.S. Kim, S. Chen, S.H. Yang, P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671 (2009)CrossRefGoogle Scholar
  103. 103.
    N.L. Wu, Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75, 6 (2002)CrossRefGoogle Scholar
  104. 104.
    K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources 135, 354 (2004)CrossRefGoogle Scholar
  105. 105.
    A udge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89 (1994)Google Scholar
  106. 106.
    J.P. Zheng, T.R. Jow, High energy and high power density electrochemical capacitors. J. Power Sources 62, 155 (1996)CrossRefGoogle Scholar
  107. 107.
    H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999)CrossRefGoogle Scholar
  108. 108.
    A. Laforgue, P. Simon, J.F. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synthetic Met. 123, 311 (2001)CrossRefGoogle Scholar
  109. 109.
    K. Naoi, S. Suematsu, A. Manago, Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420 (2000)CrossRefGoogle Scholar
  110. 110.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  111. 111.
    D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178 (2006)CrossRefGoogle Scholar
  112. 112.
    K. Machida, K. Furuuchi, M. Min, K. Naoi, Mixed proton-electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402 (2004)Google Scholar
  113. 113.
    M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004)CrossRefGoogle Scholar
  114. 114.
    W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092 (2003)CrossRefGoogle Scholar
  115. 115.
    J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala, Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309 (1997)CrossRefGoogle Scholar
  116. 116.
    M. Min, K. Machida, J.H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334 (2006)CrossRefGoogle Scholar
  117. 117.
    Y. Wang, K. Takahashi, K.H. Lee, G.Z. Cao, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133 (2006)CrossRefGoogle Scholar
  118. 118.
    W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Local atomic structure and conduction mechanism of nanocrystalline hydrous ruo2 from x-ray scattering. J. Phys. Chem. B 106, 12677 (2002)CrossRefGoogle Scholar
  119. 119.
    T. Shinomiya, V. Gupta, N. Miura, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim. Acta 51, 4412 (2005)CrossRefGoogle Scholar
  120. 120.
    Y.U. Jeong, A. Manthiram, Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 149, A1419 (2002)CrossRefGoogle Scholar
  121. 121.
    J. Kim, A. Manthiram, A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265 (1997)CrossRefGoogle Scholar
  122. 122.
    J.W. Long, C.P. Rhodes, A.L. Young, D.R. Rolison, Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Lett. 3, 1155 (2003)CrossRefGoogle Scholar
  123. 123.
    Y. Murakami, K. Konishi, Remarkable co-catalyst effect of gold nanoclusters on olefin oxidation catalyzed by a manganese–porphyrin complex. J. Am. Chem. Soc. 129, 14401 (2007)CrossRefGoogle Scholar
  124. 124.
    J.K. Yuan, W.N. Li, S. Gomez, S.L. Suib, Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 127, 14184 (2005)CrossRefGoogle Scholar
  125. 125.
    M. Yin, S. O’Brien, Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125, 10180 (2003)CrossRefGoogle Scholar
  126. 126.
    X.H. Zhong, R.G. Xie, L.T. Sun, I. Lieberwirth, W.J. Knoll, Synthesis of dumbbell-shaped manganese oxide nanocrystals. Phys. Chem. B 110, 2 (2006)Google Scholar
  127. 127.
    L.C. Zhang, Z.H. Liu, H. Lv, X.H. Tang, K. Ooi, Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007)CrossRefGoogle Scholar
  128. 128.
    M.S. Wu, P.J. Chiang, J.T. Lee, J.C. Lin, Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 (2005)CrossRefGoogle Scholar
  129. 129.
    F.Y. Cheng, J. Chen, X.L. Gou, P.W. Shen, High-power alkaline Zn-MnO2 batteries using y-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17, 2753 (2005)CrossRefGoogle Scholar
  130. 130.
    V. Subramanian, H.W. Zhu, R. Vajtai, P.M. Ajayan, B.Q. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 (2005)CrossRefGoogle Scholar
  131. 131.
    Y. Oaki, H. Imai, One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew. Chem. Int. Ed. 46, 4951 (2007)CrossRefGoogle Scholar
  132. 132.
    Y.U. Jeong, A. Manthiram, Amorphous ruthenium-chromium oxides for electrochemical capacitors. Electrochem. Solid-State Lett. 3, 205 (2000)CrossRefGoogle Scholar
  133. 133.
    Y.U. Jeong, A. Manthiram, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc. 148, A189 (2001)CrossRefGoogle Scholar
  134. 134.
    J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997)CrossRefGoogle Scholar
  135. 135.
    N. Pinna, U. Wild, J. Urban, R. Schlögl, Divanadium pentoxide nanorods. Adv. Mater. 15, 329 (2003)CrossRefGoogle Scholar
  136. 136.
    H.J. Qiu, J. Zhai, S.H. Li, M.X. Wan, Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv. Funct. Mater. 13, 925 (2003)CrossRefGoogle Scholar
  137. 137.
    J.X. Huang, R.B. Kaner, A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851 (2004)CrossRefGoogle Scholar
  138. 138.
    V. Gupta, N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 7, 995 (2005)CrossRefGoogle Scholar
  139. 139.
    Z.X. Wei, M.X. Wan, Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Adv. Mater. 14, 1314 (2002)CrossRefGoogle Scholar
  140. 140.
    Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619 (2006)CrossRefGoogle Scholar
  141. 141.
    S.I. Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699 (2008)CrossRefGoogle Scholar
  142. 142.
    H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10, 1056 (2008)CrossRefGoogle Scholar
  143. 143.
    E.S. Toberer, T.D. Schladt, R. Seshadri, Macroporous manganese oxides with regenerative mesopores. J. Am. Chem. Soc. 128, 1462 (2006)CrossRefGoogle Scholar
  144. 144.
    T. Fukushima, A. Kosaka, Y. Yamamoto, T. Aimiya, S. Notazawa, T. Takigawa, T. Inabe, T. Aida, Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2, 554 (2006)CrossRefGoogle Scholar
  145. 145.
    V. Subramanian, H. Zhu, B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827 (2006)CrossRefGoogle Scholar
  146. 146.
    E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)CrossRefGoogle Scholar
  147. 147.
    D. Zilli, P.R. Bonelli, A.L. Cukierman, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17, 5136 (2006)CrossRefGoogle Scholar
  148. 148.
    R.W. Pekala, J.C. Farmer, C.T. Alivaso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225, 74 (1998)CrossRefGoogle Scholar
  149. 149.
    A.E. Fischer, K. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7 281 (2007)CrossRefGoogle Scholar
  150. 150.
    J.W. Long, B.M. Dening, T.M. McEvoy, D.R. Rolison, Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide). J. Non-Cryst. Solids 350, 97 (2004)Google Scholar
  151. 151.
    H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664 (2008)CrossRefGoogle Scholar
  152. 152.
    J.H. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim. Acta 47, 2381 (2002)CrossRefGoogle Scholar
  153. 153.
    N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51, 3039 (2006)CrossRefGoogle Scholar
  154. 154.
    L.Z. Fan, J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8, 937 (2008)CrossRefGoogle Scholar
  155. 155.
    Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 45, 2116 (2007)CrossRefGoogle Scholar
  156. 156.
    A. Jänes, H. Kurig, E. Lust, Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 45, 1226 (2007)CrossRefGoogle Scholar
  157. 157.
    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle Scholar
  158. 158.
    R. Liu, S.B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942 (2008)CrossRefGoogle Scholar
  159. 159.
    J.N. Broughton, M.J. Brett, Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim. Acta 50, 4814 (2005)CrossRefGoogle Scholar
  160. 160.
    J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560 (2005)CrossRefGoogle Scholar
  161. 161.
    H.J. Ahn, W.B. Kim, T.Y. Seong, Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors. Electrochem. Commun. 10, 1284 (2008)CrossRefGoogle Scholar
  162. 162.
    P. Novák, K. Müller, K.S.V. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207 (1997)CrossRefGoogle Scholar
  163. 163.
    L. Liang, J. Liu, C.F. Windisch, G.J. Exarhos, Y. Li, Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 41, 3665 (2002)CrossRefGoogle Scholar
  164. 164.
    L.Z. Fan, Y.S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 17, 3083 (2007)CrossRefGoogle Scholar
  165. 165.
    M.J. Winokur, B.R. Mattes, Structural studies of halogen acid doped polyaniline and the role of water hydration. Macromolecules 13, 8183 (1998)CrossRefGoogle Scholar
  166. 166.
    C.C. Hu, J.Y. Lin, Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3. Electrochim. Acta 47, 4055 (2002)CrossRefGoogle Scholar
  167. 167.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006)CrossRefGoogle Scholar
  168. 168.
    M. Hughes, M. Shaffer, N.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14, 382 (2002)CrossRefGoogle Scholar
  169. 169.
    E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)CrossRefGoogle Scholar
  170. 170.
    J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, W.Z. Li, J.G. Wen, Z.F. Ren, Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes. Synthetic Met. 125, 289 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China 2011

Authors and Affiliations

  1. 1.Research Institute of Chemical DefenseBeijingChina

Personalised recommendations