Skip to main content

Supercapacitors Based on 3D Nanostructured Electrodes

  • Chapter
  • First Online:
  • 2288 Accesses

Abstract

Climate change, the decreasing availability of fossil fuels vs. the increasing demand for them, and atmospheric pollution caused by combustion engines of automotive systems require society to move toward sustainable and renewable resources [1]. As a result, we observe an increase in renewable energy production from sun and wind, as well as the development of electric vehicles or hybrid electric vehicles with low CO2 emissions. Because the sun does not shine at night, the wind does not blow on command, and we expect to drive an autonomous car for at least a few hours, energy storage systems are starting to play a larger part in our lives [1, 2]. In response to the needs of modern society and emerging ecological concerns, it is now essential that new, low-cost, and environmentally friendly energy conversion and storage systems are found. At the forefront of these electrochemical energy storage systems are lithium–ion batteries [3, 4], fuel cells [5], solar cells, and supercapacitors (SCs) [6, 7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    Article  CAS  Google Scholar 

  2. J. Tollefson, Car industry: charging up the future. Nature 456, 436 (2008)

    Article  CAS  Google Scholar 

  3. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  4. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251 (2008)

    Article  CAS  Google Scholar 

  5. B. Sorensen, Hydrogen and Fuel Cells (Elsevier Academic Press, London 2005)

    Google Scholar 

  6. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer/Plenum Press, New York, NY 1999)

    Google Scholar 

  7. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000)

    Article  Google Scholar 

  8. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule for electrochemical energy storage and production. Nature 393, 346 (1998)

    Article  CAS  Google Scholar 

  9. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  10. R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E.S. Takeuchi, Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1 (2004)

    Article  CAS  Google Scholar 

  11. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  12. M. Armand, P. Johansson, Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821 (2008)

    Article  CAS  Google Scholar 

  13. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651 (2008)

    Article  CAS  Google Scholar 

  14. US Department of Energy. Basic Research Needs for Electrical Energy Storage (2007) <http://www.sc.doe.gov/bes/reports/abstracts.html#EES2007>

  15. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998)

    Article  CAS  Google Scholar 

  16. A.G. Pandolfo, A.F. Hollenkamp, Cabron properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)

    Article  CAS  Google Scholar 

  17. Y. Gogotsi (ed.), Carbon Nanomaterials (CRC Press, Boca Raton, FL, 2006)

    Google Scholar 

  18. E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)

    Article  CAS  Google Scholar 

  19. A. Janes, E. Lust, Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113 (2006)

    Article  CAS  Google Scholar 

  20. B.D. Shanina, A.A. Konchits, S.P. Kolesnik, A.I. Veynger, A.M. Danishevskii, V.V. Popov, S.K. Gordeev, A.V. Grechinskaya, A study of nanoporous carbon obtained from ZC powders. Carbon 41, 3027 (2003)

    Article  CAS  Google Scholar 

  21. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987 (2006)

    Article  CAS  Google Scholar 

  22. C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian, Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta 53, 7675 (2008)

    Article  CAS  Google Scholar 

  23. C.M. Yang, Y.J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20 (2007)

    Article  CAS  Google Scholar 

  24. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 11, 157 (2006)

    Google Scholar 

  25. A.V. Murugan, K. Vijayamohanan, Nanomaterials Chemistry (Wiley-VCH GmbH & Co., Weinheim 2007)

    Google Scholar 

  26. P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more. Interface 17, 38 (2008)

    CAS  Google Scholar 

  27. G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Characterization of electrodes for super capacitors: surface area and pore size at the solid-gas and electrode solution interfaces of activated carbons. J. Electrochem. Soc. 147, 2486 (2000)

    Article  CAS  Google Scholar 

  28. L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880 (2001)

    Article  CAS  Google Scholar 

  29. L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton-selective environment in the pores of activated molecular sieving carbon electrodes. J. Phys. Chem. B 106, 10128 (2002)

    Article  CAS  Google Scholar 

  30. Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater. Chem. Phys. 80, 704 (2003)

    Article  CAS  Google Scholar 

  31. H.F. Stoeckh, Microporous carbons and their characterization: the present state of the art. Carbon 28, 1 (1990)

    Article  Google Scholar 

  32. J.K. Hong, J.H. Lee, S.M. Oh, Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. J. Power Sources 111, 90 (2002)

    Article  CAS  Google Scholar 

  33. S. Kuroda, N. Tobori, M. Sakuraba, Y. Sato, Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. J. Power Sources 119–121, 924 (2003)

    Article  CAS  Google Scholar 

  34. K. Tatsumi, K. Zaghib, H. Abe, S. Higuchi, T. Ohsaki, Y. Sawada, A modification in the preparation process of a carbon whisker for the anode performance of lithium rechargeable batteries. J. Power Sources 54, 425 (1995)

    Article  CAS  Google Scholar 

  35. G. Ertl, H. Knözinger, J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, vol. 1. (Wiley-VCH, Weinheim 1997)

    Google Scholar 

  36. H.D. Gesser, P.C. Goswami, Aerogels and related porous materials. Chem. Rev. 89, 765 (1989)

    Article  CAS  Google Scholar 

  37. R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989)

    Article  CAS  Google Scholar 

  38. B.H. Han, W.Z. Zhou, A. Sayari, Direct preparation of nanoporous carbon by nanocasting. J. Am. Chem. Soc. 125, 3444 (2003)

    Article  CAS  Google Scholar 

  39. A. Taguchi, J.H. Smått, M. Lindén, Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15, 1209 (2003)

    Article  CAS  Google Scholar 

  40. A.H. Lu, J.H. Smått, S. Backlund, M. Lindén, Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater. 72, 59 (2004)

    Article  CAS  Google Scholar 

  41. H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu, D. Zhao, Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of la3d symmetry. Chem. Commun. 38, 2842 (2002)

    Google Scholar 

  42. K. Nakanishi, Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67 (1997)

    Article  CAS  Google Scholar 

  43. J.H. Smått, S.A. Schunk, M. Lindén, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354 (2003)

    Article  CAS  Google Scholar 

  44. A.H. Lu, J.H. Smått, M. Lindén, Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv. Funct. Mater. 15, 865 (2005)

    Article  CAS  Google Scholar 

  45. Z.G. Shi, Y.Q. Feng, L. Xu, S.L. Da, Preparation of porous carbon-silica composite monoliths. Carbon 41, 2668 (2003)

    Article  CAS  Google Scholar 

  46. Z.G. Shi, Y.Q. Feng, L. Xu, S.L. Da, M. Zhang, Synthesis of a carbon monolith with trimodal pores. Carbon 41, 2677 (2003)

    Article  CAS  Google Scholar 

  47. T. Kyotani, T. Nagai, S. Inoue, A. Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609 (1997)

    Article  CAS  Google Scholar 

  48. C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739 (1996)

    Article  CAS  Google Scholar 

  49. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743 (1999)

    Article  CAS  Google Scholar 

  50. F. Schüth, Endo-and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 42, 3604 (2003)

    Article  CAS  Google Scholar 

  51. O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff, Porous silica via colloidal crystallization. Nature 389, 447 (1997)

    Article  CAS  Google Scholar 

  52. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000)

    Article  CAS  Google Scholar 

  53. C. Yu, J. Fan, B. Tian, D. Zhao, G.D. Stucky, High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14, 1742 (2002)

    Article  CAS  Google Scholar 

  54. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 429, 281 (2004)

    Article  CAS  Google Scholar 

  55. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45, 1757 (2007)

    Article  CAS  Google Scholar 

  56. R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489 (2006)

    Article  CAS  Google Scholar 

  57. S. Urbonaitea, S. Wachtmeisterb, C. Mirguetc, E. Coroneld, W.Y. Zoub, S. Csillagb, G. Svenssona, EELS studies of carbide derived carbons. Carbon 45, 2047 (2007)

    Article  CAS  Google Scholar 

  58. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003)

    Article  CAS  Google Scholar 

  59. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760 (2006)

    Article  CAS  Google Scholar 

  60. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001)

    Article  CAS  Google Scholar 

  61. D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99 (1998)

    Article  CAS  Google Scholar 

  62. D.R. Rolison, Catalytic nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003)

    Article  CAS  Google Scholar 

  63. G. Lee, S. Pyun, Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. Langmuir 22, 10659 (2006)

    Article  CAS  Google Scholar 

  64. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004)

    Article  CAS  Google Scholar 

  65. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373 (2008)

    Article  CAS  Google Scholar 

  66. D.W. Wang, F. Li, H.T. Fang, M. Liu, G.Q. Lu, H.M. Cheng, Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport. J. Phys. Chem. B 110, 8570 (2006)

    Article  CAS  Google Scholar 

  67. W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44, 216 (2006)

    Article  CAS  Google Scholar 

  68. A.B. Fuertes, F. Pico, J.M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J. Power Sources 133, 329 (2004)

    Article  CAS  Google Scholar 

  69. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J. Phys. Chem. C 111, 227 (2007)

    Article  CAS  Google Scholar 

  70. T. Morishita, Y. Soneda, T. Tsumura, M. Inagaki, Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 44, 2360 (2006)

    Article  CAS  Google Scholar 

  71. E. Raymundo-PiMero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498 (2006)

    Article  CAS  Google Scholar 

  72. C. Zhao, W. Wang, Z. Yu, H. Zhang, A. Wang, Y. Yang, Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities electronic supplementary information (ESI) available: nitrogen adsorption/desorption isotherms, textural parameters and carbon yield data for LMC materials. J. Mater. Chem. 20, 976 (2010)

    Article  CAS  Google Scholar 

  73. J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem. Commun. 8, 51 (2006)

    Article  CAS  Google Scholar 

  74. A. Dillon, K. Jones, T. Bekkedahl, C. Kiang, D. Bethune, M. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386 377 (1997)

    Article  CAS  Google Scholar 

  75. J. Wildoer, L. Venema, A. Rinzler, R. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998)

    Article  CAS  Google Scholar 

  76. Z. Ren, Z. Huang, J. Xu, J. Wang, P. Bush, M. Siegal, P. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)

    Article  CAS  Google Scholar 

  77. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622 (2000)

    Article  CAS  Google Scholar 

  78. R. Baughman, A. Zakhidov, W. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787 (2002)

    Article  CAS  Google Scholar 

  79. C. Niu, E. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70 1480 (1997)

    Article  CAS  Google Scholar 

  80. C. Liu, A. Bard, F. Wudl, I. Weitz, J. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors. Electrochem. Solid-State Lett. 2, 577 (1999)

    Article  CAS  Google Scholar 

  81. C. Emmenegger, P. Mauron, A. Zuttel, C. Nutzenadel, A. Schneuwly, R. Gallay, L. Schlapbach, Carbon nanotube synthesized on metallic substrates. Appl. Surf. Sci. 162–163, 452 (2000)

    Article  Google Scholar 

  82. C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J. Power Sources 124, 321 (2003)

    Article  CAS  Google Scholar 

  83. D. Zilli, P. Bonelli, A. Cukierman, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17, 5136 (2006)

    Article  Google Scholar 

  84. H. Zhang, G. Cao, Y. Yang, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 18, 195607 (2007)

    Article  CAS  Google Scholar 

  85. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10, A106 (2007)

    Article  CAS  Google Scholar 

  86. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362 (2004)

    Article  CAS  Google Scholar 

  87. G.Y. Xiong, D.Z. Wang, Z.F. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44, 969 (2006)

    Article  CAS  Google Scholar 

  88. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Influence of hydrogen pretreatment condition on the morphology of Fe/Al2O3 catalyst film and growth of millimeter-long carbon nanotube array. J. Phys. Chem. C 112, 4524 (2008)

    Article  CAS  Google Scholar 

  89. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Influence of ethylene and hydrogen flow rates on the wall number, crystallinity, and length of millimeter-long carbon nanotube array. J. Phys. Chem. C 112, 12706 (2008)

    Article  CAS  Google Scholar 

  90. G.Y. Zhang, D. Mann, L. Zhang, A. Javey, Y.M. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H.J. Dai, Ultra-high-yield growth of vertical single-walled. Carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA 102, 16141 (2005)

    Article  CAS  Google Scholar 

  91. Y. Murakami, S. Maruyama, Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces. Chem. Phys. Lett. 422, 575 (2006)

    Article  CAS  Google Scholar 

  92. L.B. Zhu, Y.Y. Sun, D.W. Hess, C.P. Wong, Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett. 6, 243 (2006)

    Article  CAS  Google Scholar 

  93. A. Kumar, V.L. Pushparaj, S. Kar, O. Nalamasu, P.M. Ajayan, Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett. 89, 163120 (2006)

    Article  CAS  Google Scholar 

  94. J. Yu, J.G. Shapter, M.R. Johnston, J.S. Quinton, J.J. Gooding, Electron-transfer characteristics of ferrocene attached to single-walled carbon nanotubes (SWCNT) arrays directly anchored to silicon(100). Electrochim. Acta 52, 6206 (2007)

    Article  CAS  Google Scholar 

  95. D. Nkosi, K.I. Ozoemena, self-assembled nano-arrays of single-walled carbon nanotube–octa(hydroxyethylthio)phthalocyaninatoiron(ii) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53, 2782 (2008)

    Article  CAS  Google Scholar 

  96. T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128, 13338 (2006)

    Article  CAS  Google Scholar 

  97. S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112 (2006)

    Article  CAS  Google Scholar 

  98. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.N. Gu, Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils. Carbon 46, 822 (2008)

    Article  CAS  Google Scholar 

  99. H. Zhang, G.P. Cao, Y.S. Yang, Z.N. Gu, Comparision between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc. 155, K19 (2008)

    Article  CAS  Google Scholar 

  100. P. Ayala, A. Grüneis, T. Gemming, B. Büchner, M.H. Rümmeli, D. Grimm, J. Schumann, R. Kaltofen, F.L. Freire Jr., H.D. Fonseca Filho, T. Pichler, Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chem. Mater. 19, 6131 (2007)

    Article  CAS  Google Scholar 

  101. I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19 (2009)

    Article  CAS  Google Scholar 

  102. S.W. Lee, B.S. Kim, S. Chen, S.H. Yang, P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671 (2009)

    Article  CAS  Google Scholar 

  103. N.L. Wu, Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75, 6 (2002)

    Article  CAS  Google Scholar 

  104. K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources 135, 354 (2004)

    Article  CAS  Google Scholar 

  105. A udge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89 (1994)

    Google Scholar 

  106. J.P. Zheng, T.R. Jow, High energy and high power density electrochemical capacitors. J. Power Sources 62, 155 (1996)

    Article  CAS  Google Scholar 

  107. H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999)

    Article  CAS  Google Scholar 

  108. A. Laforgue, P. Simon, J.F. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synthetic Met. 123, 311 (2001)

    Article  CAS  Google Scholar 

  109. K. Naoi, S. Suematsu, A. Manago, Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420 (2000)

    Article  CAS  Google Scholar 

  110. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005)

    Article  CAS  Google Scholar 

  111. D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178 (2006)

    Article  CAS  Google Scholar 

  112. K. Machida, K. Furuuchi, M. Min, K. Naoi, Mixed proton-electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402 (2004)

    CAS  Google Scholar 

  113. M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004)

    Article  CAS  Google Scholar 

  114. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092 (2003)

    Article  CAS  Google Scholar 

  115. J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala, Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309 (1997)

    Article  CAS  Google Scholar 

  116. M. Min, K. Machida, J.H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334 (2006)

    Article  CAS  Google Scholar 

  117. Y. Wang, K. Takahashi, K.H. Lee, G.Z. Cao, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133 (2006)

    Article  CAS  Google Scholar 

  118. W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Local atomic structure and conduction mechanism of nanocrystalline hydrous ruo2 from x-ray scattering. J. Phys. Chem. B 106, 12677 (2002)

    Article  CAS  Google Scholar 

  119. T. Shinomiya, V. Gupta, N. Miura, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim. Acta 51, 4412 (2005)

    Article  CAS  Google Scholar 

  120. Y.U. Jeong, A. Manthiram, Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 149, A1419 (2002)

    Article  CAS  Google Scholar 

  121. J. Kim, A. Manthiram, A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265 (1997)

    Article  CAS  Google Scholar 

  122. J.W. Long, C.P. Rhodes, A.L. Young, D.R. Rolison, Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Lett. 3, 1155 (2003)

    Article  CAS  Google Scholar 

  123. Y. Murakami, K. Konishi, Remarkable co-catalyst effect of gold nanoclusters on olefin oxidation catalyzed by a manganese–porphyrin complex. J. Am. Chem. Soc. 129, 14401 (2007)

    Article  CAS  Google Scholar 

  124. J.K. Yuan, W.N. Li, S. Gomez, S.L. Suib, Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 127, 14184 (2005)

    Article  CAS  Google Scholar 

  125. M. Yin, S. O’Brien, Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125, 10180 (2003)

    Article  CAS  Google Scholar 

  126. X.H. Zhong, R.G. Xie, L.T. Sun, I. Lieberwirth, W.J. Knoll, Synthesis of dumbbell-shaped manganese oxide nanocrystals. Phys. Chem. B 110, 2 (2006)

    CAS  Google Scholar 

  127. L.C. Zhang, Z.H. Liu, H. Lv, X.H. Tang, K. Ooi, Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007)

    Article  CAS  Google Scholar 

  128. M.S. Wu, P.J. Chiang, J.T. Lee, J.C. Lin, Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 (2005)

    Article  CAS  Google Scholar 

  129. F.Y. Cheng, J. Chen, X.L. Gou, P.W. Shen, High-power alkaline Zn-MnO2 batteries using y-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17, 2753 (2005)

    Article  CAS  Google Scholar 

  130. V. Subramanian, H.W. Zhu, R. Vajtai, P.M. Ajayan, B.Q. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 (2005)

    Article  CAS  Google Scholar 

  131. Y. Oaki, H. Imai, One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew. Chem. Int. Ed. 46, 4951 (2007)

    Article  CAS  Google Scholar 

  132. Y.U. Jeong, A. Manthiram, Amorphous ruthenium-chromium oxides for electrochemical capacitors. Electrochem. Solid-State Lett. 3, 205 (2000)

    Article  CAS  Google Scholar 

  133. Y.U. Jeong, A. Manthiram, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc. 148, A189 (2001)

    Article  CAS  Google Scholar 

  134. J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997)

    Article  CAS  Google Scholar 

  135. N. Pinna, U. Wild, J. Urban, R. Schlögl, Divanadium pentoxide nanorods. Adv. Mater. 15, 329 (2003)

    Article  CAS  Google Scholar 

  136. H.J. Qiu, J. Zhai, S.H. Li, M.X. Wan, Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv. Funct. Mater. 13, 925 (2003)

    Article  CAS  Google Scholar 

  137. J.X. Huang, R.B. Kaner, A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851 (2004)

    Article  CAS  Google Scholar 

  138. V. Gupta, N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 7, 995 (2005)

    Article  CAS  Google Scholar 

  139. Z.X. Wei, M.X. Wan, Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Adv. Mater. 14, 1314 (2002)

    Article  CAS  Google Scholar 

  140. Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619 (2006)

    Article  CAS  Google Scholar 

  141. S.I. Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699 (2008)

    Article  CAS  Google Scholar 

  142. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10, 1056 (2008)

    Article  CAS  Google Scholar 

  143. E.S. Toberer, T.D. Schladt, R. Seshadri, Macroporous manganese oxides with regenerative mesopores. J. Am. Chem. Soc. 128, 1462 (2006)

    Article  CAS  Google Scholar 

  144. T. Fukushima, A. Kosaka, Y. Yamamoto, T. Aimiya, S. Notazawa, T. Takigawa, T. Inabe, T. Aida, Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2, 554 (2006)

    Article  CAS  Google Scholar 

  145. V. Subramanian, H. Zhu, B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827 (2006)

    Article  CAS  Google Scholar 

  146. E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)

    Article  CAS  Google Scholar 

  147. D. Zilli, P.R. Bonelli, A.L. Cukierman, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17, 5136 (2006)

    Article  Google Scholar 

  148. R.W. Pekala, J.C. Farmer, C.T. Alivaso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225, 74 (1998)

    Article  CAS  Google Scholar 

  149. A.E. Fischer, K. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7 281 (2007)

    Article  CAS  Google Scholar 

  150. J.W. Long, B.M. Dening, T.M. McEvoy, D.R. Rolison, Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide). J. Non-Cryst. Solids 350, 97 (2004)

    CAS  Google Scholar 

  151. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664 (2008)

    Article  CAS  Google Scholar 

  152. J.H. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim. Acta 47, 2381 (2002)

    Article  CAS  Google Scholar 

  153. N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51, 3039 (2006)

    Article  CAS  Google Scholar 

  154. L.Z. Fan, J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8, 937 (2008)

    Article  CAS  Google Scholar 

  155. Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 45, 2116 (2007)

    Article  CAS  Google Scholar 

  156. A. Jänes, H. Kurig, E. Lust, Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 45, 1226 (2007)

    Article  CAS  Google Scholar 

  157. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)

    Article  CAS  Google Scholar 

  158. R. Liu, S.B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942 (2008)

    Article  CAS  Google Scholar 

  159. J.N. Broughton, M.J. Brett, Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim. Acta 50, 4814 (2005)

    Article  CAS  Google Scholar 

  160. J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560 (2005)

    Article  CAS  Google Scholar 

  161. H.J. Ahn, W.B. Kim, T.Y. Seong, Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors. Electrochem. Commun. 10, 1284 (2008)

    Article  CAS  Google Scholar 

  162. P. Novák, K. Müller, K.S.V. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207 (1997)

    Article  Google Scholar 

  163. L. Liang, J. Liu, C.F. Windisch, G.J. Exarhos, Y. Li, Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 41, 3665 (2002)

    Article  CAS  Google Scholar 

  164. L.Z. Fan, Y.S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 17, 3083 (2007)

    Article  CAS  Google Scholar 

  165. M.J. Winokur, B.R. Mattes, Structural studies of halogen acid doped polyaniline and the role of water hydration. Macromolecules 13, 8183 (1998)

    Article  Google Scholar 

  166. C.C. Hu, J.Y. Lin, Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3. Electrochim. Acta 47, 4055 (2002)

    Article  CAS  Google Scholar 

  167. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006)

    Article  CAS  Google Scholar 

  168. M. Hughes, M. Shaffer, N.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14, 382 (2002)

    Article  CAS  Google Scholar 

  169. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)

    Article  CAS  Google Scholar 

  170. J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, W.Z. Li, J.G. Wen, Z.F. Ren, Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes. Synthetic Met. 125, 289 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China

About this chapter

Cite this chapter

Zhang, H., Cao, G., Yang, Y. (2011). Supercapacitors Based on 3D Nanostructured Electrodes. In: Zhou, W., Wang, Z. (eds) Three-Dimensional Nanoarchitectures. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9822-4_17

Download citation

Publish with us

Policies and ethics