Skip to main content

New Strain Rate Dependent Material Model for Fiber Reinforced Composites

  • Conference paper
  • First Online:
Book cover Time Dependent Constitutive Behavior and Fracture/Failure Processes, Volume 3

Abstract

A new strain rate dependent material and failure model referred to as the M2C Model was generated suitable for modeling the static and dynamic material behavior of fiber reinforced composites. The M2C consists of an orthotropic viscoelastic constitutive model in combination with an enhancement of the Failure Mode Concept (FMC) of Cuntze for dynamic loading conditions and was implemented into the finite element Code LS-DYNA3D as user defined material model. A [0°|90°] glass fiber reinforced composite was investigated under different types of loading and loading directions within seven orders of magnitude of strain rate. The finite element results are compared with experimental results. In the principal loading directions and under arbitrary loading conditions an impressing agreement was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Song, B.; Chen, W.; Weerasooriya, T.: Quasi-static and dynamic Compressive Behavior of a S-2 Glass/SC15 Composite, Journal of Composite Materials 37 (2003), p. 1723–1743, 2003.

    Article  Google Scholar 

  2. Harding, J.: Effect of strain rate and specimen geometry on the compressive strength of woven glass-reinforced epoxy lamainates, Composites 24 (1993), Vol. 4, p. 323–332, 1993.

    Google Scholar 

  3. Tasdemirci, A.; Hall, I. W.: Numerical and experimental studies of damage generation in a polymer composite material at high strain rates. In: Polymer Testing 25 (2006), p. 797–806.

    Google Scholar 

  4. Aboudi, J.: A continuum theory for fiber reinforced elastic-viscoplastic composites. Int. J. Eng. Sci. 20 (1982), Vol. 5, p. 605–621, 1982.

    Google Scholar 

  5. Aboudi, J.: Effective constitutive equations for fiber reinforced viscoplastic composites exhibiting anisotropic hardening. Int. J. Eng. Sci. 21 (1983), Vol. 9, p. 1081–1096, 1983.

    Google Scholar 

  6. Bennett, J. G., Habermann, K. S.: An Alternate Unified Approach to the mechanical Analysis of Composite Materials, J. Compos. Mater. 30 (1996), Vol. 16, p. 1732–1747, 1996.

    Google Scholar 

  7. Hill, R.: A theory of the yielding and plastic flow of anisotropic materials, Proc. Roy. Soc. London 193 (1948), Vol. 1033, p. 281–297, 1948.

    Google Scholar 

  8. Hashin, Z.: Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics 47 (1980), p. 329–334, 1980.

    Article  Google Scholar 

  9. Puck, A.: Festigkeitsanalsyse von Faser-Matrix-Laminaten: Modelle für die Praxis. Carl Hanser Verlag München Wien, 1996.

    Google Scholar 

  10. Cuntze, R. G.: The Failure Mode Concept - A New Comprehensive 3D-Strength Analysis Concept for any Brittle and Ductile behaving Material. Proceedings European Conference on Spacecraft Structures, Materials and Mechanical Testing, Braunschweig, 4. - 6. Nov. 1998 (ESA SP 428, Feb. 1999), European Space Agency, 1998.

    Google Scholar 

  11. Cuntze, R. G.; Freund, A.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Comp. Sci. Tech. 64 (2004), p. 343–377, 2004.

    Article  Google Scholar 

  12. Cuntze, R. G.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Part B., Compos. Sci. Tech. 64 (2004), p. 487–516, 2004.

    Google Scholar 

  13. Soden, P. D.; Kaddour, A. S.; Hinton, M. J.: Recommendations for designers and researchers resulting from the world-wide failure exercise. Comp. Sci. Tech. 64 (2004), p. 589–604, 2004.

    Article  Google Scholar 

  14. Mayer, M.: Modellierung des statischen und dynamischen Materialverhaltens faserverstärkter Kunststoffe, PhD. Thesis, TU Chemnitz 2010, to be published.

    Google Scholar 

  15. Meyer, L. W.; Mayer, M.: Static and dynamic material behavior of fiber reinforced composites – Modeling and Testing, Presentation at the International Symposium on Plasticity 2009, St. Thomas, U.S. Virgin Islands, January 3–8, 2009.

    Google Scholar 

  16. Mayer, M.: Modellierung des statischen und dynamischen Werkstoffverhaltens faserverstärkter Kunststoffe, Presentation at the 5th Nordmetall Kolloquium, 2.-3.12.2009, Adorf, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Meyer, L.W., Mayer, M. (2011). New Strain Rate Dependent Material Model for Fiber Reinforced Composites. In: Proulx, T. (eds) Time Dependent Constitutive Behavior and Fracture/Failure Processes, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9794-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9794-4_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9498-1

  • Online ISBN: 978-1-4419-9794-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics