Obtaining Viscoelastic Properties from Instrumented Indentation

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Instrumented indentation is a powerful tool for probing small-scale mechanical behaviors of “soft” materials, such as polymers, composites, and biomaterials [1-3]. Since many soft materials deform viscoelastically, it is important to develop robust analysis methods for obtaining viscoelastic properties from indentation measurements. Extending the early work by such pioneers as Lee [4], Radok [5], Lee and Radok [6], Hunter [7], Gramham [8], and Ting [9], a number of authors have recently proposed methods for determining viscoelastic properties from indentation measurements [10-33]. In this presentation, we will discuss our recent results on modeling instrumented indentation in linear viscoelastic solids [34-40]. We will first examine the relationships between initial unloading slope, contact depth, and viscoelastic properties for various loading conditions, including load- or displacement-control [35-37]. We will then discuss several commonly used methods, such as the "hold-at-peak-load" and "hold-at-the-maximum-depth" techniques [38]. We will also evaluate methods for obtaining storage and loss modulus using dynamic indentation using either spherical or pyramidal indenters [39]. Furthermore, we will discuss a set of newly proposed methods for measuring shear relaxation modulus and creep compliance using axisymmetric indenters of power-law profiles [40]. Results on indentation in viscoplastic solids will also be presented. These investigations may help improve instrumented indentation techniques for measuring mechanical properties of soft materials.

Keywords

Selenium Pyramid 

References

  1. 1.
    A.C. Fischer-Cripps: Nanoindentation, 2nd edition (Springer 2004).Google Scholar
  2. 2.
    M.R. VanLandingham: Review of instrumented indentation. J. Res. Nat. Inst. Stand. Tech. 108, 249 (2003).CrossRefGoogle Scholar
  3. 3.
    G.M. Pharr, Y.-T. Cheng, I.M. Hutchings, M. Sakai, N.R. Moody, G. Sundararajan, and M.V. Swain: Introduction. J. Mater. Res. 24, 579 (2009).CrossRefGoogle Scholar
  4. 4.
    E.H. Lee: Stress analysis in visco-elastic bodies. Quarterly Appl. Math. 13, 183 (1955).MATHGoogle Scholar
  5. 5.
    J.R.M. Radok: Visco-elastic stress analysis. Quarterly Appl. Math. 15, 198 (1957).MathSciNetMATHGoogle Scholar
  6. 6.
    E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G.A.C. Graham: The contact problem in the linear theory of viscoelasticity. Int. J. Engng. Sci. 3, 27 (1965); Contact problem in linear theory of viscoelsticity when time dependent contact area has any number of maxima and minima. Int. J. Engng. Sci. 5, 495 (1967).Google Scholar
  9. 9.
    T.C.T. Ting: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966); Contact problems in linear theory of viscoelasticity. J. Appl. Mech. 35, 248 (1968).Google Scholar
  10. 10.
    B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).CrossRefGoogle Scholar
  11. 11.
    L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polymer Science: Part B: Polymer Physics 38, 10 (2000).CrossRefGoogle Scholar
  12. 12.
    P.-L. Larrson and S. Carlsson: On microindentation of viscoelastic polymers. Polymer Testing 17, 49 (1998).CrossRefGoogle Scholar
  13. 13.
    S. Shimizu, T. Yanagimoto, and M. Sakai: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).CrossRefGoogle Scholar
  14. 14.
    M. Sakai and S. Shimizu: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).CrossRefGoogle Scholar
  15. 15.
    A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).CrossRefGoogle Scholar
  16. 16.
    M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).CrossRefGoogle Scholar
  17. 17.
    H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mechanics of Time-dependent Materials 7, 189 (2003).CrossRefGoogle Scholar
  18. 18.
    B. Tang and A.H.W. Ngan: Investigation of viscoelastic properties of amorphous selenium near class transition using depth-sensing indentation, Soft Materials 2, 125 (2004).CrossRefGoogle Scholar
  19. 19.
    B. Geng, F.Q. Yang, T. Druffel, and E.A. Grulke: Nanoindentation behavior of ultrathin polymeric films. Polymer 46, 11768 (2005).CrossRefGoogle Scholar
  20. 20.
    C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, and L. Shen: Nanoindentation of polymers with a sharp indenter. J. Mater. Res. 20, 1597 (2005); Characterization of mechanical properties of polymers by nanoindentation tests. Phil. Mag. 86, 4487 (2006).Google Scholar
  21. 21.
    G. Huang and H.B. Lu: Measurement of Young's relaxation modulus using nanoindentation. Mechanics of Time-Dependent Materials 10, 229 (2006).MathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev: Accurately evaluating Young's modulus of polymers through nanoindentations: A phenomenological correction factor to the Oliver and Pharr procedure. Applied Physics Letters 89, 171905 (2006).CrossRefGoogle Scholar
  23. 23.
    C.A. Tweedie and K.J. Van Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Vandamme and F.J. Ulm: Viscoelastic solutions for conical indentation. International Journal of Solids and Structures 43, 3142 (2006).MATHCrossRefGoogle Scholar
  25. 25.
    C.K. Liu, S. Lee, L.P. Sung, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 033503 (2006).CrossRefGoogle Scholar
  26. 26.
    A.E. Giannakopoulos: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids 54, 1305 (2006).MATHCrossRefGoogle Scholar
  27. 27.
    M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philosophical Magazine 86, 5625 (2006).CrossRefGoogle Scholar
  28. 28.
    J. Deuschle, S. Enders, and E. Arzt: Surface detection in nanoindentation of soft polymers. J. Mater. Res. 22, 3107 (2007).CrossRefGoogle Scholar
  29. 29.
    W.J. Wright, A.R. Maloney, and W.D. Nix: An improved analysis for viscoelastic damping in dynamic nanoindentation, Int. J. Surf. Sci. Eng. 1, 274 (2007).CrossRefGoogle Scholar
  30. 30.
    N. Fujisawa and M.V. Swain: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).CrossRefGoogle Scholar
  31. 31.
    E.G. Herbert, W.C. Oliver, and G.M. Pharr: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D - Appl. Phys. 41, 074021 (2008).CrossRefGoogle Scholar
  32. 32.
    C. Pichler, R. Lackner, and F.J. Ulm: Scaling relations for viscoelastic-cohesive conical indentation. Int. J. Mat. Res. 99, 836 (2008).CrossRefGoogle Scholar
  33. 33.
    Y.P. Cao, D.C. Ma, and D. Raabe: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5, 240 (2009).CrossRefGoogle Scholar
  34. 34.
    Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Materials Science &; Engineering R-Reports 44, 91 (2004).CrossRefGoogle Scholar
  35. 35.
    Y.T. Cheng and C.M. Cheng: General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Applied Physics Letters 87, 111914 (2005).CrossRefGoogle Scholar
  36. 36.
    Y.T. Cheng and C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).CrossRefGoogle Scholar
  37. 37.
    Y.T. Cheng and C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mat. Sci. Eng. A 409, 93 (2005).CrossRefGoogle Scholar
  38. 38.
    Y.T. Cheng, W.Y. Ni, and C.M. Cheng: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20, 3061 (2005).CrossRefGoogle Scholar
  39. 39.
    Y.T. Cheng, W.Y. Ni, and C.M. Cheng: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Physical Review Letters 97, 075506 (2006).CrossRefGoogle Scholar
  40. 40.
    Y.-T. Cheng and F. Q. Yang: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles, J. Materials Research 24, 3013 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations