Skip to main content

Destructive Methods for Measuring Residual Stresses: Techniques and Opportunities

  • Conference paper
  • First Online:

Abstract

Destructive methods are commonly used to evaluate residual stresses in a wide range of engineering components. While seemingly less attractive than non-destructive methods because of the specimen damage they cause, the non-destructive methods are very frequently the preferred choice because of their versatility and reliability. Many different methods and variations of methods have been developed to suit various specimen geometries and measurement objectives. Previously, only specimens with simple geometries could be handled, now the availability of sophisticated computational tools and of high-precision machining and measurement processes have greatly expanded the scope of the destructive methods for residual stress evaluation. This paper reviews several prominent destructive measurement methods, describes recent advances, and indicates some promising directions for future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruud, C. “A Review of Nondestructive Methods for Residual Stress Measurements”, Journal of Metals, Vol.33, No.7, pp.35-40, 1981.

    Google Scholar 

  2. Schwaighofer, J. “Determination of Residual Stresses on the Surface of Structural Parts”, Experimental Mechanics, Vol.4, No.2, pp.54-56, 1964.

    Article  Google Scholar 

  3. Jullien, D. and Gril, J. “Growth Strain Assessment at the Periphery of Small-diameter Trees using the Two-grooves Method: Influence of Operating Parameters Estimated by Numerical Simulations”, Wood Science and Technology, Vol.42, No.7, pp.551-565, 2008.

    Article  Google Scholar 

  4. Walton, H. W. “Deflection Methods to Estimate Residual Stress”, in Handbook of Residual Stress and Deformation of Steel, Totten, G., Howes, M., and Inoue, T. (eds.), ASM International, pp.89-98, 2002.

    Google Scholar 

  5. Fuller, J. “Conditioning Stress Development and Factors That Influence the Prong Test”, USDA Forest Products Laboratory, Research Paper FPL–RP–537, 6pp, 1995.

    Google Scholar 

  6. Baldwin, W. M. “Residual Stresses in Metals”, Proc. American Society for Testing and Materials, Philadelphia, PA, 49pp., 1949.

    Google Scholar 

  7. ASTM. “Standard Practice for Estimating the Approximate Residual Circumferential Stress in Straight Thin-walled Tubing”, Standard Test Method E1928-07, American Society for Testing and Materials, West Conshohocken, PA, 2007.

    Google Scholar 

  8. Stoney. G. G. “The Tension of Thin Metallic Films Deposited by Electrolysis”, Proc. Royal Society of London, Series A, Vol.82, pp.172-175, 1909.

    Google Scholar 

  9. Cao, W. Fathallah, R. Castex, L. “Correlation of Almen Arc Height with Residual Stresses in Shot Peening Process”, Materials Science and Technology, Vol.11, No.9, pp.967–973, 1995.

    Google Scholar 

  10. Shadley, J. R., Rybicki, E. F. and Shealy, W. S. “Application Guidelines for the Parting out in a Through Thickness Residual Stress Measurement Procedure”, Strain, Vol.23, pp.157-166, 1987.

    Article  Google Scholar 

  11. Tebedge, N., Alpsten, G. and Tall, L. “Residual-stress Measurement by the Sectioning Method”, Experimental Mechanics, Vol.13, No.2, pp. 88–96, 1973.

    Article  Google Scholar 

  12. Treuting, R.G. and Read, W.T. “A Mechanical Determination of Biaxial Residual Stress in Sheet Materials”, Journal of Applied Physics, Vol.22, No.2, pp.130-134, 1951.

    Article  MATH  Google Scholar 

  13. Sachs, G. and Espey, G. “The Measurement of Residual Stresses in Metal”, The Iron Age, Sept 18, pp.63-71, 1941.

    Google Scholar 

  14. Hospers, F. and Vogelesang, L. B. “Determination of Residual Stresses in Aluminum-alloy Sheet Material”, Experimental Mechanics, Vol.15, No.3, pp.107-110, 1975.

    Article  Google Scholar 

  15. Östlund, M., Östlund, S., Carlsson, L.A. and Fellers, C. “Experimental Determination of Residual Stresses in Paperboard”, Experimental Mechanics, Vol.45, No.6, pp.493-497, 1985.

    Google Scholar 

  16. Lu, J. (ed.) “Handbook of Measurement of Residual Stresses”, Fairmont Press. Lilburn, USA, 1996.

    Google Scholar 

  17. Measurements Group. “Measurement of Residual Stresses by Hole-Drilling Strain Gage Method”, Tech Note TN-503-6, Vishay Measurements Group, Raleigh, NC, 2001.

    Google Scholar 

  18. Rendler, N. J. and Vigness, I. “Hole-Drilling Strain-gage Method of Measuring Residual Stresses, Experimental Mechanics, Vol.6, No.12, pp.577-586, 1966.

    Article  Google Scholar 

  19. Wu, Z., Lu, J. and Han, B. “Study of Residual Stress Distribution by a Combined Method of Moiré Interferometry and Incremental Hole Drilling.” Journal of Applied Mechanics, Vol.65, No.4 Part I: pp.837-843, Part II: pp.844-850, 1998.

    Google Scholar 

  20. Nelson, D.V. and McCrickerd, J.T. “Residual-Stress Determination Through Combined Use of Holographic Interferometry and Blind-Hole Drilling”, Experimental Mechanics, Vol.26, No.4, pp.371-378, 1986.

    Article  Google Scholar 

  21. McGinnis, M. J., Pessiki, S. and Turker, H. “Application of Three-dimensional Digital Image Correlation to the Core-drilling Method.” Experimental Mechanics, Vol.45, No.4, pp.359-367, 2005.

    Article  Google Scholar 

  22. Grant, P. V., Lord, J. D. and Whitehead, P. S. “The Measurement of Residual Stresses by the Incremental Hole Drilling Technique”, Measurement Good Practice Guide, No.53. National Physical Laboratory, UK, 2002.

    Google Scholar 

  23. ASTM. “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method”, Standard Test Method E837-08, American Society for Testing and Materials, West Conshohocken, PA, 2008.

    Google Scholar 

  24. Schajer, G. S. “Measurement of Non-Uniform Residual Stresses using the Hole-Drilling Method”, Journal of Engineering Materials and Technology, Vol.110, No.4, Part I: pp.338-343, Part II: pp.344-349, 1988.

    Google Scholar 

  25. Milbradt, K.P. “Ring-Method Determination of Residual Stresses”, Proc. SESA, Vol.9, No.1, pp.63-74, 1951.

    Google Scholar 

  26. Kiel, S. “Experimental Determination of Residual Stresses with the Ring-Core Method and an On-Line Measuring System”, Experimental Techniques, Vol.16, No.5, pp.17-24, 1992.

    Article  Google Scholar 

  27. Ajovalasit, A., Petrucci, G. and Zuccarello, B. “Determination of Non-Uniform Residual Stresses using the Ring-Core Method”, Journal of Engineering Materials and Technology, Vol.118, No.2, pp.224-228, 1996.

    Article  Google Scholar 

  28. Leggatt, R. H., Smith, D. J., Smith, S.D. and Faure, F. “Development and Experimental Validation of the Deep Hole Method for Residual Stress Measurement”, J. Strain Analysis, Vol.31, No.3, pp.177-186, 1996.

    Article  Google Scholar 

  29. DeWald, A. T. and Hill, M. R. “Improved Data Reduction for the Deep-Hole Method of Residual Stress Measurement”, Journal of Strain Analysis, Vol.38, No.1, pp.65-78, 2003.

    Article  Google Scholar 

  30. Amadei, B. and Stephansson, O. “Rock Stress and its Measurement”, Chapman and Hall, London, 1997.

    Book  Google Scholar 

  31. Prime, M. B. “Residual Stress Measurement by Successive Extension of a Slot: The Crack Compliance Method”, Applied Mechanics Reviews, Vol.52, No.2, pp.75-96, 1999.

    Article  Google Scholar 

  32. Germaud M., Cheng, W., Finnie, I., and Prime, M. B. “The Compliance Method for Measurement of Near Surface Residual Stresses - Analytical Background”, Journal of Engineering Materials and Technology, Vol.119, No.4, pp.550-555, 1994.

    Article  Google Scholar 

  33. Prime, M. B. “Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut”, Journal of Engineering Materials and Technology, Vol.123, No.2, 2001.

    Google Scholar 

  34. Pagliaro, P., Prime, M.B., Clausen, B., Lovato, M.L., Robinson, J.S., Schajer, G.S., Steinzig, M.L., Swenson, H. and Zuccarello B. “Mapping Multiple Residual Stress Components Using the Contour Method and Superposition”, Intl. Conference on Residual Stresses, Denver, CO, August 6–8, 2008.

    Google Scholar 

  35. DeWald, A.T. and Hill, M.R. “Multi-Axial Contour Method for Mapping Residual Stresses in Continuously Processed Bodies”, Experimental Mechanics, Vol.46, No.4, pp.473–490, 2006.

    Article  Google Scholar 

  36. Flaman, M. T. “Brief Investigation of Induced Drilling Stresses in the Center-Hole Method of Residual-Stress Measurement”, Experimental Mechanics Vol.22, No.1, pp.26 –30, 1982.

    Article  Google Scholar 

  37. Beaney, E. M. “Accurate Measurement of Residual Stress on any Steel Using the Centre Hole Method”, Strain, Vol.12, No.3, pp.99-106, 1976.

    Article  Google Scholar 

  38. Lee, H.T., Rehbach, W.P., Hsua, F.C., Tai, T.Y. and Hsua, E. “The study of EDM Hole-Drilling Method for Measuring Residual Stress in SKD11 Tool Steel”, Journal of Materials Processing Technology, Vol.149, No.1-3, pp.88–93, 2004.

    Article  Google Scholar 

  39. McCarthy, J., Pei, Z., Becker, M. and Atteridge, D. “FIB Micromachined Submicron Thickness Cantilevers for the Study of Thin Film Properties”, Thin Solid Films, Vol.358, No.1, pp.146-151, 2000.

    Article  Google Scholar 

  40. Sabaté, N., Vogel, D., Keller, J., Gollhardt, A., Marcos, J., Gràcia, I., Cané, C. and Michel, B. “FIB-Based Technique for Stress Characterization on Thin Films for Reliability Purposes”, Microelectronic Engineering, Vol.84, No.5-8, pp.1783-1787, 2007.

    Article  Google Scholar 

  41. Korsunsky, A. M., Sebastiani, M., Bemporad, E. “Focused Ion Beam Ring Drilling for Residual Stress Evaluation”, Materials Letters, Vol.63, pp.1961–1963, 2009.

    Article  Google Scholar 

  42. Winiarski, B, Langford, R. M., Tian, J., Yokoyama, Y., Liaw, P. K. and Withers, P. J. “Mapping Residual Stress Distributions at the Micron Scale in Amorphous Materials”, Metallurgical and Materials Transactions A, Vol.41, 2010.

    Google Scholar 

  43. Nelson, D.V. “Residual Stress Determination by Hole Drilling Combined with Optical Methods”, Experimental Mechanics, Vol.50, No.1, pp.145–158, 2010.

    Article  Google Scholar 

  44. McDonach, A., McKelvie, J., MacKenzie, P. and Walker, C. A. “Improved Moiré Interferometry and Applications in Fracture Mechanics, Residual Stress and Damaged Composites.” Experimental Techniques, Vol.7, No.6, pp.20-24, 1983.

    Article  Google Scholar 

  45. Nicoletto, G. “Moiré Interferometry Determination of Residual Stresses in the Presence of Gradients,” Experimental Mechanics, Vol.31, No.3, pp.252-256, 1991.

    Article  Google Scholar 

  46. Steinzig, M. and Ponslet, E. “Residual Stress Measurement Using the Hole Drilling Method and Laser Speckle Interferometry: Part I.” Experimental Techniques, Vol.27, No.3, pp.43-46, 2003.

    Article  Google Scholar 

  47. Montay, G., Sicot, O., Maras, A., Rouhaud, E. and François, M. “Two Dimensions Residual Stresses Analysis Through Incremental Groove Machining Combined with Electronic Speckle Pattern Interferometry”, Experimental Mechanics, Vol.49, pp.459–469, 2009.

    Article  Google Scholar 

  48. Sutton, M. A., McNeill, S. R., Helm, J. D. and Chao, Y. J. “Advances in Two-Dimensional and Three-Dimensional Computer Vision.” Chapter 10 in “Photomechanics”, ed. P. K. Rastogi, Springer-Verlag, Berlin Heidelberg, 2000.

    Google Scholar 

  49. Hung, M.Y.Y., Long, K.W. and Wang, J.Q. “Measurement of Residual Stress by Phase Shift Shearography”, Optics and Lasers in Engineering, Vol.27, No.1, pp.61–73, 1997.

    Article  Google Scholar 

  50. Lord, J.D., Penn, D. and Whitehead, P. “The Application of Digital Image Correlation for Measuring Residual Stress by Incremental Hole Drilling”, Applied Mechanics and Materials, Vol.13-14, pp.65-73, 2008.

    Article  Google Scholar 

  51. Parker, R. L. “Geophysical Inverse Theory.” Princeton University Press, New Jersey, 1994.

    MATH  Google Scholar 

  52. Lambert, J. W. “A Method of Deriving Residual Stress Equations”, Proc. SESA, Vol.12, No.1, pp.91–96, 1954.

    Google Scholar 

  53. Bijak-Zochowski, M. “A Semidestructive Method of Measuring Residual Stresses.” VDI-Berichte, Vol.313, pp.469-476, 1978.

    Google Scholar 

  54. Schajer, G. S. and Prime, M. B. “Use of Inverse Solutions for Residual Stress Measurements.” Journal of Engineering Materials and Technology. Vol.128, No.3, pp.375-382, 2006.

    Article  Google Scholar 

  55. Schajer, G. S. and Prime, M. B. “Residual Stress Solution Extrapolation for the Slitting Method Using Equilibrium Constraints”, Journal of Engineering Materials and Technology. Vol.129, No.2, pp.227-232, 2007.

    Article  Google Scholar 

  56. Tikhonov, A., Goncharsky, A., Stepanov, V. and Yagola, A. “Numerical Methods for the Solution of Ill-Posed Problems,” Kluwer, Dordrecht, The Netherlands, 1995.

    Book  MATH  Google Scholar 

  57. Focht, G. and Schiffner, K. “Determination of Residual Stresses by an Optical Correlative Hole Drilling Method.” Experimental Mechanics, Vol.43, No.1, pp.97-104, 2003.

    Article  Google Scholar 

  58. Ponslet, E. and Steinzig, M. “Residual Stress Measurement Using the Hole Drilling Method and Laser Speckle Interferometry: Part II.” Experimental Techniques, Vol.27, No.4, pp.17-21, 2003.

    Article  Google Scholar 

  59. Baldi, A. “A New Analytical Approach for Hole Drilling RS Analysis by Full Field Method”, Journal of Engineering Materials and Technology, Vol.127, No.2, pp. 165–169, 2005.

    Article  Google Scholar 

  60. Schajer, G. S. and Steinzig, M. “Full-Field Calculation of Hole-Drilling Residual Stresses from ESPI Data.” Experimental Mechanics, Vol.45, No.6, pp.526-532, 2005.

    Article  Google Scholar 

  61. An, Y. and Schajer, G.S. “Pixel Quality Evaluation and Correction Procedures in ESPI”, Experimental Techniques, (in press), 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Schajer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Schajer, G.S. (2011). Destructive Methods for Measuring Residual Stresses: Techniques and Opportunities. In: Proulx, T. (eds) Experimental and Applied Mechanics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9792-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9792-0_39

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9497-4

  • Online ISBN: 978-1-4419-9792-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics