Skip to main content

Fat Segmentation in Magnetic Resonance Images

  • Chapter
  • First Online:
Book cover Medical Image Processing

Abstract

Over the past two decades, many authors have investigated the use of magnetic resonance imaging (MRI) for the analysis of body fat and body fat distribution. However, accurate isolation of fat in MR images is an arduous task when performed manually. In order to alleviate this burden, numerous automated and semi-automated segmentation algorithms have been developed for the quantification of fat in MR images. This chapter will discuss some of the techniques and models used in these algorithms, with a particular emphasis on their application and implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fast spin echo techniques acquire between 2 and 16 lines of k-space during each TR.

  2. 2.

    Hematopoietic activity: pertaining to the formation of blood or blood cells.

References

  1. British Nutrition Foundation Obesity Task Force: Obesity: the report of the British Nutrition Foundation Task Force, John Wiley & Sons (1999)

    Google Scholar 

  2. Sarría, A., Moreno, L.A., et al.: Body mass index, triceps skinfold and waist circumference in screening for adiposity in male children and adolescents. Acta Pædiatrica 90(4), 387–392 (2001)

    Article  Google Scholar 

  3. Peters, D., et al.: Estimation of body fat and body fat distribution in 11-year-old children using magnetic resonance imaging and hydrostatic weighing, skinfolds, and anthropometry. Am. J. Hum. Biol. 6(2), 237–243 (1994)

    Article  Google Scholar 

  4. Rush, E.C., et al.: Prediction of percentage body fat from anthropometric measurements: comparison of New Zealand European and Polynesian young women. Am. J. Clin. Nutr. 66(1), 2–7 (1997)

    Google Scholar 

  5. (WHO), W.H.O. [cited; Available from:http://www.who.int/dietphysicalactivity/publication/facts/obesity/en/. (2008)

  6. Siegel, M.J., et al.: Total and intraabdominal fat distribution in preadolescents and adolescents: measurement with MR imaging. Radiology 242(3), 846–56 (2007)

    Article  Google Scholar 

  7. Kullberg, J., et al.: Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. Br. J. Radiol. 82(974), 123–130 (2009)

    Google Scholar 

  8. Seidell, J.C., Bakker, C.J., van der Kooy, K.: Imaging techniques for measuring adipose-tissue distribution–a comparison between computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 51(6), 953–957 (1990)

    Google Scholar 

  9. Barnard, M.L., et al.: Development of a rapid and efficient magnetic resonance imaging technique for analysis of body fat distribution. NMR Biomed. 9(4), 156–64 (1996)

    Article  Google Scholar 

  10. Thomas, E.L., et al.: Magnetic resonance imaging of total body fat. J. Appl. Physiol. 85(5), 1778–85 (1998)

    Google Scholar 

  11. Chan, Y.L., et al.: Body fat estimation in children by magnetic resonance imaging, bioelectrical impedance, skinfold and body mass index: a pilot study. J Paediatr. Child Health 34(1), 22–28 (1998)

    Article  Google Scholar 

  12. Kamel, E.G., McNeill, G., Van Wijk, M.C.: Change in intra-abdominal adipose tissue volume during weight loss in obese men and women: correlation between magnetic resonance imaging and anthropometric measurements. Int. J. Obes. Relat. Metab. Disord. 24(5), 607–613 (2000)

    Article  Google Scholar 

  13. Ross, R., et al.: Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J. Appl. Physiol. 81(6), 2445–2455 (1996)

    Google Scholar 

  14. Terry, J.G., et al.: Evaluation of magnetic resonance imaging for quantification of intraabdominal fat in human beings by spin-echo and inversion-recovery protocols. Am. J. Clin. Nutr. 62(2), 297–301 (1995)

    MathSciNet  Google Scholar 

  15. Brennan, D.D., et al.: Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am. J. Roentgenol. 185(2), 418–23 (2005)

    Google Scholar 

  16. Peng, Q., et al.: Automated method for accurate abdominal fat quantification on water-saturated magnetic resonance images. J. Magn. Reson. Imaging. 26(3), 738–46 (2007)

    Article  Google Scholar 

  17. Kovanlikaya, A., et al.: Fat quantification using three-point dixon technique: in vitro validation. Acad. Radiol. 12(5), 636–639 (2005)

    Article  Google Scholar 

  18. Goyen, M.: In: Goyen, M. (ed.) Real Whole Body MRI Requirements, Indications, Perspectives, 1 edn., vol. 1, p. 184. Berlin, Mc Graw Hill (2007)

    Google Scholar 

  19. Peng, Q., et al.: Water-saturated three-dimensional balanced steady-state free precession for fast abdominal fat quantification. J. Magn. Reson. Imaging. 21(3), 263–271 (2005)

    Article  Google Scholar 

  20. Warren, M., Schreiner, P.J., Terry, J.G.: The relation between visceral fat measurement and torso level–is one level better than another? The Atherosclerosis Risk in Communities Study, 1990–1992. Am. J. Epidemiol. 163(4), 352–358 (2006)

    Article  Google Scholar 

  21. Dugas-Phocion, G., et al.: Improved EM-Based tissue segmentation and partial volume effect quantification in multi-sequence brain MRI. In: Lecture Notes in Computer Science, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, vol. 3216, p. 7. (2004)

    Google Scholar 

  22. González Ballester, M.Á., Zisserman, A.P. Brady, M.: Estimation of the partial volume effect in MRI. Med. Image Anal. 6(4), 389–405 (2002)

    Google Scholar 

  23. Rajapakse, J.C., Kruggel, F.: Segmentation of MR images with intensity inhomogeneities. Image Vis. Comput. 16(3), 165–180 (1998)

    Article  Google Scholar 

  24. Li, X., et al.: Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability. Med. Phys. 32(7), 2337–2345 (2005)

    Article  Google Scholar 

  25. Horsfield, M.A., et al.: Incorporating domain knowledge into the fuzzy connectedness framework: Application to brain lesion volume estimation in multiple sclerosis. Med. Imaging IEEE Trans. 26(12), 1670–1680 (2007)

    Article  Google Scholar 

  26. Siyal, M.Y., Yu, L.: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recognit. Lett. 26(13), 2052–2062 (2005)

    Article  Google Scholar 

  27. Yun, S., Kyriakos, W.E., et al.: Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils. J. Magn. Reson. Imaging. 25(3), 588–597 (2007)

    Article  Google Scholar 

  28. Murakami, J.W., Hayes, C.E. Weinberger, E. Intensity correction of phased-array surface coil images. Magn. Reson. Med. 35(4), 585–590 (1996)

    Article  Google Scholar 

  29. Pham, D.L., Prince, J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 20(1), 57–68 (1999)

    Article  MATH  Google Scholar 

  30. Nie, S., Zhang, Y., Li, W., Chen, Z.: A novel segmentation method of MR brain images based on genetic algorithm. IEEE International Conference on Bioinformatics and Biomed. Eng. 729–732 (2007)

    Google Scholar 

  31. Wells, W.M., et al.: Adaptive segmentation of MRI data. Med. Imaging IEEE Trans. 15(4), 429–442 (1996)

    Article  Google Scholar 

  32. Guillemaud, R.: Uniformity correction with homomorphic filtering on region of interest. In: Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on (1998)

    Google Scholar 

  33. Behrenbruch, C.P., et al.: Image filtering techniques for medical image post-processing: an overview. Br. J. Radiol. 77(suppl__2), S126–132 (2004)

    Google Scholar 

  34. Guillemaud, R., Brady, M.: Estimating the bias field of MR images. Med. Imaging IEEE Trans. 16(3), 238–251 (1997)

    Article  Google Scholar 

  35. Yang, G.Z., et al.: Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA 14(1), 39–44 (2002)

    Article  Google Scholar 

  36. Leroy-Willig, A., et al.: Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magn. Reson. Imaging 15(7), 737–44 (1997)

    Article  Google Scholar 

  37. Zhang, Y.J., Gerbrands, J.J.: Comparison of thresholding techniques using synthetic images and ultimate measurement accuracy. In: Pattern Recognition, 1992. Vol.III. Conference C: Image, Speech and Signal Analysis, Proceedings., 11th IAPR International Conference on (1992)

    Google Scholar 

  38. Mehmet, S., Bulent, S.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  39. Sonka, M., Hlavac, V., Boyle, R.: In: Hilda, G. (ed.) Image Processing, Analysis, and Machine Vision, International Student Edition, 3rd edn., vol. 1. Thomson, Toronto, p. 829. (2008)

    Google Scholar 

  40. Nualsawat, H., et al.: FASU: A full automatic segmenting system for ultrasound images. In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision. 2002, IEEE Computer Society.

    Google Scholar 

  41. Otsu, N.: A threshold selection method from gray-level histograms. Syst. Man Cybern. IEEE Trans. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  42. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  43. Lee, H., Park, R.H.: Comments on ‘An optimal multiple threshold scheme for image segmentation’. Syst. Man Cybern. IEEE Trans. 20(3), 741–742 (1990)

    Article  Google Scholar 

  44. Peng, Q., et al.: Automated method for accurate abdominal fat quantification on water-saturated magnetic resonance images. J. Magn. Reson. Imaging 26(3), 738–746 (2007)

    Article  Google Scholar 

  45. Dempster, A.P., Laird, N.M., R.D. B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    Google Scholar 

  46. Lynch, M., et al.: Automatic seed initialization for the expectation-maximization algorithm and its application in 3D medical imaging. J. Med. Eng. Technol. 31(5), 332–340 (2007)

    Article  Google Scholar 

  47. Liang, Z.: Tissue classification and segmentation of MR images. Eng. Med. Biol. Mag. IEEE. 12(1), 81–85 (1993)

    Article  Google Scholar 

  48. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–37 (2000)

    Article  Google Scholar 

  49. Yan, K., Engelke, K., Kalender, W.A.: A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. Med. Imaging IEEE Trans. 22(5), 586–598 (2003)

    Article  Google Scholar 

  50. Wee-Chung Liew, A., Yan, H., Yang, M.: Robust adaptive spot segmentation of DNA microarray images. Pattern Recogn. 36(5), 1251–1254 (2003)

    Article  Google Scholar 

  51. Dougherty, G.: Digital Image Processing for Medical Applications, 1 edn., vol. 1, p. 447. Cambridge University Press, New York (2009)

    Google Scholar 

  52. Shen, W., et al.: Adipose tissue quantification by imaging methods: A proposed classification. Obes. Res. 11(1), 5–16 (2003)

    Article  Google Scholar 

  53. Laharrague, P., Casteilla, L.: Bone Marow Adipose Tissue, 1 edn. Nutrition and health. Humana Press, New Jersey (2007)

    Google Scholar 

  54. Mantatzis, M., Prassopoulos P.: Total body fat, visceral fat, subcutaneous fat, bone marrow fat? What is important to measure? AJR Am. J. Roentgenol. 189(6), W386 (2007); author reply W385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Costello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Costello, D.P., Kenny, P.A. (2011). Fat Segmentation in Magnetic Resonance Images. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_5

Download citation

Publish with us

Policies and ethics