Skip to main content

Deformable Models and Level Sets in Image Segmentation

  • Chapter
  • First Online:
Medical Image Processing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 3362 Accesses

Abstract

Segmentation is a partitioning process of an image domain into non-overlapping connected regions that correspond to significant anatomical structures. Automated segmentation of medical images is a difficult task. Images are often noisy and usually contain more than a single anatomical structure with narrow distances between organ boundaries. In addition, the organ boundaries may be diffuse. Although medical image segmentation has been an active field of research for several decades, there is no automatic process that can be applied to all imaging modalities and anatomical structures [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzopoulos, D., McInerney, T.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1, 91–108 (1996)

    Article  Google Scholar 

  2. Falcao, A., Udupa, J., Samarasekera, S., Sharma, S.: User steered image segmentation paradigm: Livewire and livelane. Graph. Models Image Process. 60(4), 233–260 (1998)

    Article  Google Scholar 

  3. Mortensen, E.N.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60 (5), 349–384 (1998)

    Article  MATH  Google Scholar 

  4. Falcao, A. et al.: A 3D generalization of user-steered live-wire segmentation. Med. Image Anal. 4(4), 389–402. (2000)

    Article  Google Scholar 

  5. Schenk, A.M., Guido, P., Peitgen, H.-O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, vol. 1935, pp. 186–195. (2000)

    Google Scholar 

  6. Grady, L., et al. Random Walks for Interactive Organ Segmentation in Two and Three Dimensions: Implementation and Validation., 773–780. 2005

    Google Scholar 

  7. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)

    Article  Google Scholar 

  8. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  9. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms., ACM Comput. Surv. 36(2), 81–121 (2004)

    Google Scholar 

  10. Suri, J.S., et al.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery(part-II): a state-of-the-art review. Pattern Anal. Appl. 5(1), 77–89 (2002)

    Article  MathSciNet  Google Scholar 

  11. Suri, J.S., et al.: A review on MR vascular image processing algorithms: Acquisition and prefiltering: part I. IEEE Trans. Inform. Technol. Biomed. 6(4), 324–337 (2002)

    Article  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 321–322 (1998)

    Google Scholar 

  13. Fischler, M., Elschlager, R.: The representation and matching of pictorial images.., IEEE Trans.– Comput. 22, 67–92 (1973)

    Google Scholar 

  14. Widrow, B.: The “rubber-mask” technique. Pattern Recogn. 5, 175–211 (1973)

    Article  Google Scholar 

  15. Williams, D., Shah, M.: A fast algorithm for active contours and curvature estimation. Comput.Vis. Graph. Image Process. Image Underst. 55(1), 14–26 (1992)

    MATH  Google Scholar 

  16. Cohen, L.D.: On active contour models and balloons., Comput. Vis. Graph. Image Process. Image Underst. 211–218 (1991)

    Google Scholar 

  17. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans. Pattern Anal. Mach. Intell. 1131–1147 (1993)

    Google Scholar 

  18. Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Process. 71(2), 131–139 (1998)

    Article  MATH  Google Scholar 

  19. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855 (1990)

    Article  Google Scholar 

  21. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. s.l. SIAM Publisher, Philadelphia (2003)

    Google Scholar 

  22. Menet, S., Saint-Mark, P., Medioni, G.: B-snakes: implementation and application to stereo. Image Underst. Workshop. 720–726 (1997)

    Google Scholar 

  23. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  24. Duncan, L.H., Staib, J.S.: Boundary fitting with parametrically deformable models. Trans. Pattern Recogn. Mach. Intell. 14(11), 1061–1075 (1997)

    Google Scholar 

  25. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  26. Vemuri, B.C., Y., J. Yeand. Image registration via level-set motion: Applications to atlas-based segmentation. Medical Image Analysis, 7(1), 1–20 (2003)

    Google Scholar 

  27. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tanenbaum, A.: Three snippets of curve evolution theory in computer vision. Math. Comput. Model. 24, 103–119 (1996)

    Article  Google Scholar 

  29. Kichenassamy, S., et al.: Conformal curvature flows: From phase transitions to active vision., Archive of Rational Mechanics and Analysis 136, 275–301 (1996)

    Google Scholar 

  30. Caselles, V., et al.: A geometric model for active contour. Numerische Mathematik 66, 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yezzi, A., et al.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging, 16, 199–209 (1997)

    Article  Google Scholar 

  32. Chan, T.F., Sandberg, B., Vese, L. Active contours without edges for vector valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)

    Article  Google Scholar 

  33. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 266–277 (2001)

    Google Scholar 

  34. Chan, T.F., Vese, L.A.: A Multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50( 3), 271–293 (2002)

    Article  MATH  Google Scholar 

  35. Alfiansyah, A., Streichenberger, R., Kilian, P., Bellemare, M.-E., Coulon, O.: Automatic segmentation of hip bone surface in ultrasound images using an active contour. In: CARS’2006, Computed Assisted Radiology and Surgery, in International Journal of Computer Assisted Radiology and Surgery, 1, supplement 1, 115–116, Osaka Japan, 2006.

    Google Scholar 

  36. Alfiansyah, A., Ng, K.H., Lamsudin, R.: Deformable model for serial ultrasound images segmentation: application to computer assisted hip athropasty. Singapore: s.n., In: International Conference on BioMedical Engineering (2008)

    Google Scholar 

  37. Lopez Perez, L., Le Maitre, J., Alfiansyah A., Bellemare, M.-E.: Bone Surface reconstruction using localized freehand ultrasound imaging. In: Vancouver: 30th Annual International IEEE EMBS Conference, pp. 2964–2967. (2008)

    Google Scholar 

  38. Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image Vis. Comput. 19, 1023–104037 (2001)

    Article  Google Scholar 

  39. Vray, D., et al.: {3D Quantification of Ultrasound Images: Application to Mouse Embryo Imaging In Vivo}. 2002

    Google Scholar 

  40. Liu, Y.J. et al.: Computerised prostate boundary estimation in ultrasound images using the radial bas-relief method., Med. Biol. Eng. Comput. 35, 4450–4454 (1997)

    Google Scholar 

  41. Tauber, P., Batatia, H., Ayache, A.: Robust B-Spline Snakes for Ultrasound Images Segmentation. s.l.: IEEE, 2004

    Google Scholar 

  42. Liu, F., et al.: Liver segmentation for CT images using GVF snake. Med. Phy. 32(12), 3699–3706 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agung Alfiansyah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alfiansyah, A. (2011). Deformable Models and Level Sets in Image Segmentation. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_4

Download citation

Publish with us

Policies and ethics