Skip to main content

Examples Illustrating the Characteristics of Waveguide Propagation

  • Chapter
  • First Online:
Fundamentals of Shallow Water Acoustics

Part of the book series: The Underwater Acoustics Series ((UA))

Abstract

As we have often pointed out, when considering the propagation of sound in a shallow water waveguide, it is of primary importance to take into account interaction of the sound with the bottom. The hardest quantity to quantify in this interaction is absorption in the bottom, which leads to a fall in the signal intensity with distance. Formally, this decay is due to the complex eigenvalues in the Sturm–Liouville problem (3.7), or equivalently the constants of propagation \( {\xi_l} \) having an imaginary part \( {\gamma_l} = 2{\rm Im} {\xi_l} \) (i.e., the attenuation coefficients of the normal modes). Despite the fact that the values of \( {\gamma_l} \) are easily obtained numerically, though not experimentally, a more detailed study of their analytic behavior is advisable, particularly as a function of the parameters of the problem. We should first look at the attenuation as a function of mode number \( l \), since this dependence is crucial to explain the structure of the field formed at a large distance from the source, including its modal composition and total intensity. Moreover, in performing approximate calculations of the averaged intensity, simplified analytic formulae for \( {\gamma_l} \) are required. These simplified formulae can be obtained and interpreted in the framework of ray (or WKB) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used a liquid bottom here for simplicity. In the following, we will show that the expression for actual shallow water conditions can be reduced to the liquid bottom case by redefinition of the bottom parameters.

  2. 2.

    D. Rouseff and R.C. Spindel have pioneered the use of such an approach in processing the brightness images of the interference pattern (Rouseff 2001a, b; Rouseff and Spindel 2002).

  3. 3.

    The ray approximation corresponds to comparatively high frequency.

  4. 4.

    We note that the chirp parameters are not chosen arbitrarily in this example. The carrier frequency matches the “optimum frequency” or sound propagation in shallow water, and the frequency band corresponds to the frequency range of electromagnetic-type sound sources which are used for shallow water acoustic tomography (see Chap. 10, Table 10.1).

  5. 5.

    Notice that for these values of z 0 corresponding to the numerical example taken from Katsnelson et al. (2004a, b), the first and fifth modes are not excited.

References

  • Ageeva N.S. Krupin V.D. (1980) Effect of the bottom on the formation of the sound field in shallow water [Akusticheskii zhurnal, 26(2), p. 161–166] (in Russian)

    Google Scholar 

  • Ageeva N.S., Krupin V.D. (1981) Frequency response curves for normal modes in a shallow sea with a layered absorbing bottom [Sov. Phys. Acoust., Vol. 27(5), pp. 372–376]

    Google Scholar 

  • Ageeva N.S., Krupin V.D., Perelygin V.P. and Studenichnik N.V. (1994) Development of a geoacoustic model of shallow sea floor [Acoust. Phys., Vol. 40(2), pp. 159–165]

    Google Scholar 

  • Aikal T. (1972) The relationship between the physical properties of underwater sediments that affect bottom reflection. Marine Geology, 13, 251–266.

    Google Scholar 

  • Apel J.R., Badiey M., Berson J. et al. (1997) An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng. V.22(3), pp. 465–500.

    Google Scholar 

  • Brekhovskikh L.M. (1965) The average field in an underwater sound channel [Sov. Phys.-Acoust., Vol. 11(2), pp. 126–134]

    Google Scholar 

  • Brekhovskikh L.M. (1980) Waves in layered media, 2nd Ed. [Academic Press, New York]

    Google Scholar 

  • Brekhovskikh L.M. and Lysanov Yu.P. (1991) Fundamentals of Ocean Acoustics [Springer-Verlag, 270 p.]

    Google Scholar 

  • Gasparovic R.F., Etkin V.S. (1994) An overview of the Joint US/Russia Internal wave Remote Sensing Experiment. IGARSS’94. Digest, pp. 741–743.

    Google Scholar 

  • Chuprov S.S. (1982) Interference structure of the sound field in a stratified ocean In: Ocean acoustics. Current status (ed) L.M. Brekhovskikh [Moscow, Nauka, p. 71–91] (in Russian)

    Google Scholar 

  • Clay C.S., and Medwin H. (1977) Acoustical oceanography: principles and applications [John Wiley & Sons, Inc.]

    Google Scholar 

  • Denham R.N. (1986) Intensity decay laws for near-surface sound sources in the ocean [J. Acoust. Soc. Am., Vol. 79(1), pp. 60–63]

    Google Scholar 

  • Focke K, Weston D. (1978) Problem of the caustic in range averaged ocean sound channels [J. Acoust. Soc. Am. Suppl., Vol. 23 (1) p. 64]

    Google Scholar 

  • Gershfeld D.A., Eller A.L. (1985) Geometric considerations in determining the optimum frequency of acoustic propagation in a shallow water waveguide [J. Acoust. Soc. Am., vol. 78(2), pp. 632–641]

    Google Scholar 

  • Grachev G.A. (1983) Specific characteristics of signal attenuation in a shallow sea [Sov. Phys. Acoust., Vol. 29 (2), pp. 160–161]

    Google Scholar 

  • Grachev G. A. (1993) Theory of acoustic field invariants in layered waveguides. Acoust. Phys. 39(1), 33–35.

    Google Scholar 

  • Jensen F.B., Kuperman W.A. (1983) Optimum frequency by sound propagation in shallow water [J. Acoust. Soc. Am., Vol. 73(3), pp. 813–819]

    Google Scholar 

  • G. Jin, J.F. Lynch, R. Pawlowicz, P. Wahdhams (1993) Effects of the sea cover on acoustic ray travel times, with applications to the Greenland Sea tomography experiment. JASA, V.94(2) pp. 1044–1057.

    Google Scholar 

  • Katsnelson B.G., Kulapin L.G., (1984) Average Sound-Intensity decay law in an irregular underwater acoustic waveguide [Sov. Phys. Acoust., Vol. 30(5), pp. 379–382]

    Google Scholar 

  • Katsnelson B.G., Kravtsov, Yu.A., Kulapin, L.G., Petnikov, V.G. and Sabirov O.I. (1985) Average decay law of sound in an irregular near-bottom sound channel [Sov. Phys. Acoust., Vol. (4), pp. 321–322]

    Google Scholar 

  • Katsnelson B.G., Pereselkov S.A., Petnikov V.G. (2004) On the feasibility of normal wave selection in a shallow-water waveguide. Acoust. Phys. V.50(5), pp. 646–636.

    Google Scholar 

  • Katsnelson B.G., Pereselkov S.A., Petnikov V.G., Sabinin K.D. Effect of background internal waves on sound propagation on ocean shelf. Proceedings of the X-th L.M.Brekhovskikh’s conference “Ocean Acoustics”, 2004, 106–109.

    Google Scholar 

  • Katsnelson B.G., Petnikov V.G. (2002) Shallow water acoustics. Springer-Verlag.

    Google Scholar 

  • A. Kibblewhite and C, Denham, (1966), Experiment on Sound Propagation in Shallow Water under Isovelocity Conditions, J. Acoust. Soc. Am. Volume 40, Issue 6, pp. 1337–1344

    Google Scholar 

  • Koch R., Vidmar P., Lindfray J. (1983) Normal mode identification for impedance boundary condition [J. Acoust. Soc. Am., Vol. 73(5), pp. 1567–1570]

    Google Scholar 

  • Krupin V.D. (1972) A special effect in a waveguide having a negative sound velocity gradient [Sov. Phys. Acoust., Vol. 18(4), pp. 556–564]

    Google Scholar 

  • Kuperman W.A., Jensen F.B. (ed) (1980) Bottom-interacting ocean acoustics [Plenum Press, New York and London, 717p.]

    Google Scholar 

  • Kuperman and J. Lynch, (2004) “Shallow water acoustics”. Physics Today, pp. 55–61.

    Google Scholar 

  • Petnikov V.G., Sabinin K.D., Katsnelson B.G., Kuzkin V.M., Lavrova O.Yu., Pereselkov S.A. (2004) Specific features of internal waves and related peculiarities of acoustic fields at the oceanic continental margins. First fina

    Google Scholar 

  • Porter M., Reiss E.L. (1984) A numerical method for ocean-acoustic normal modes. [J. Acoust. Soc. Am., Vol. 76(1), pp. 244–252]

    Google Scholar 

  • Porter M., Reiss E.L. (1985) A numeral method for bottom interaction in ocean acoustic normal modes [J. Acoust. Soc. Am., Vol. 77(5), pp. 1760–1767]

    Google Scholar 

  • Porter M.B. (1992) The KRAKEN normal mode program [Report NRL/MR/5120-92- 6920, Washington, 194 p.]

    Google Scholar 

  • Rogers P., Zhou J., Zhang X. Z.,. Li F, et al., (2000) “Seabottom acoustic parameters from inversion of Yellow Sea experimental data,” in Experimental Acoustic In-JASA version Methods for Exploration of the Shallow Water Environment, edited by A. Caiti et al. (Kluwer, Norwell, MA, pp. 219–234.

    Google Scholar 

  • Rouseff D. (2001) Effect of shallow water internal waves on ocean acoustic striation patterns. Waves in Random Media. V.11. P.377–393.

    Google Scholar 

  • Rouseff D. and Spindel R.C. (2002) Modeling the waveguide invariant as a distribution. Ocean acoustic interference phenomena and signal processing ed. W.A. Kuperman and G L d’Spain. New York: AIP pp. 137–148

    Google Scholar 

  • Rouseff D. (2001) Effect of shallow water internal waves on ocean acoustic striation patterns, Waves in Random Media. V.11. P.377–393.

    Google Scholar 

  • Stoll R., (1989) Sediment Acoustics (Springer Verlag, New York, NY

    Google Scholar 

  • Tindle C.T., Hobaeck H., Muir T.G. (1987) Downslope propagation of the normal modes in a shallow water wedge [J. Acoust. Soc. Am., vol. 81(2), pp. 275–286]

    Google Scholar 

  • Tindle C.T., Dean G.B. (1985) Sound propagation over a sloping bottom using rays with beam displacement [J. Acoust. Soc. Am., Vol. 78(4), pp. 1366–1374]

    Google Scholar 

  • Tindle C.T., Weston D.E. (1980) Connection of acoustic beam displacement cycle distance and attenuation for rays and normal modes [J. Acoust. Soc. Am., Vol. 67(5), pp. 1614–1622]

    Google Scholar 

  • Tindle C.T and Zhang, Z.Y. (1992) “An equivalent fluid approximation for a low shear speed ocean bottom”, J. Acoust. Soc. Am. Volume 91, Issue 6, pp. 3248–3256

    Google Scholar 

  • Weston D.E. (1980) Acoustic flux formulas for range dependent ocean ducts [J. Acoust Soc. Am., vol. 68(1), pp. 269–281]

    Google Scholar 

  • Weston D.E. (1980) Wave-theory peaks in range dependent channels of uniform sound velocity [J. Acoust. Soc. Am., Vol. 68(1), pp. 282–286]

    Google Scholar 

  • Weston D.E. (1980) Acoustic flux method for oceanic guided waves [J. Acoust. Soc. Am., Vol. 68(1), pp. 287–296]

    Google Scholar 

  • Weston D.E. (1980) Ambient noise depth-dependence models and their relation to low-frequency attenuation [J. Acoust. Soc. Am., Vol. 67(2), pp. 530–537]

    Google Scholar 

  • Weston D.E. (1976) Propagation in water with uniform sound velocity but variable depth lossy bottom [J. Sound and Vibr. Vol. 47, pp. 473–483]

    Google Scholar 

  • Weston D.E. (1994) Wave shifts, beam shifts, and their role in modal and adiabatic propagation [J. Acoust. Soc. Am., Vol. 96(1), pp. 406–416]

    Google Scholar 

  • Zhuravlev V.A., Zarubin V.N., Sochnev O.Ya, (1986) Frequency dependence of the attenuation coefficient of a sound field in a shallow sea [Sov. Phys. Acoust., Vol. 32(1), pp. 70–71]

    Google Scholar 

  • Zverev V.A., Orlov E.F. Ed. (1984) [Interferentsia shirokopolosnogo zvuka v okeane (Interference on a wide-band sound in the ocean), Gorkii. Inst. Prikl. Fiz., in Russian]

    Google Scholar 

  • Macphezson I.D., Daintith M.J. (1967) Practical model of shallow water acoustic propagation [J. Acoust. Soc. Am., Vol. 41(4), pp. 850–854]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Katsnelson .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katsnelson, B., Petnikov, V., Lynch, J. (2012). Examples Illustrating the Characteristics of Waveguide Propagation. In: Fundamentals of Shallow Water Acoustics. The Underwater Acoustics Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9777-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9777-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9776-0

  • Online ISBN: 978-1-4419-9777-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics