Skip to main content

Foundations of the Theory of Propagation of Sound

  • Chapter
  • First Online:
Fundamentals of Shallow Water Acoustics

Part of the book series: The Underwater Acoustics Series ((UA))

  • 1818 Accesses

Abstract

In this chapter, we will consider some simple models of the shallow water waveguide. Such models allow us to obtain and understand the main features of SW sound propagation quickly. Such simple models can also be perturbed to take into account more realistic properties of the environment, thus giving them far more power than one might think at first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dependence of density on the spatial coordinates can be easily taken into account using a change of functions (see Sect. 3.3). The possibility of some depth dependence of the bottom properties is also discussed.

  2. 2.

    This field is the Green function of the waveguide, determined by the general equation (A.162); in what follows, when not required in the problem, we shall omit the arguments \( {\vec{R}_0},\,\omega \).

  3. 3.

    The function \( g(\xi ) \) is related to the impedance of the bottom\( {Z_1} \) by the equation \( g(\xi ) = i{Z_1}{/}\omega \rho \), where the impedance is defined according to Brekhovskikh (1980); the change in sign from Brekhovskikh (1980) is due to the direction of the z-axis. It also is related to the bottom reflection coefficient by \( V = {{{( {g\sqrt {{{k^2}(H) - {\xi^2}}} + i})}} / {{({g\sqrt {{{k^2}(H) - {\xi^2}}} - i})}}.} \)

  4. 4.

    In other sections we shall neglect the contribution of the continuous spectrum, and the notation \( \Psi \) will be used for the field generated by the discrete spectrum.

  5. 5.

    Strictly speaking we should write for every vertical mode \( {x_l}(y) \) and \( {y_l}(x) \). However, for simplicity we will omit subscript.

References

  • Apel J.R., Badiey M., Berson J. et al. (1997) An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng. V.22(3), pp. 465–500.

    Google Scholar 

  • Badiey, M., Katsnelson, B., Lynch, J., Pereselkov S., Siegmann, W., (2005) Measurement and modeling of 3-D sound intensity variations due to shallow water internal waves, J. Acoust. Soc. Am., Vol. 117, No. 2, pp. 613–625

    Google Scholar 

  • Barridge R., Weinberg G. (1977) Horizontal rays and vertical modes In: Wave propagation and underwater acoustics, ed J.B. Keller and J.S. Papadakis [Springer-Verlag, pp. 86–150]

    Google Scholar 

  • Brekhovskikh L.M. (1980) Waves in layered media, 2nd Ed. [Academic Press, New York]

    Google Scholar 

  • Brekhovskikh L.M. and Lysanov Yu.P. (1991) Fundamentals of Ocean Acoustics [Springer-Verlag, 270 p.]

    Google Scholar 

  • Buckingham M.J. (1980) A theoretical model of ambient noise in a low loss, shallow water channel [J. Acoust. Soc. Am., Vol. 67(4), pp. 1186–1192]

    Google Scholar 

  • Burov V.A., Sergeev S.N. (1991) Processing of acoustic fields in oceanic waveguides with compensation of an unknown distortion of the profile of the vertical receiving antenna In Formation of acoustic fields in waveguides [Nizhnii Novgorod: Izd-vo IPF AN SSSR, p. 214–218] (in Russian)

    Google Scholar 

  • Burov V.A., Sergeev S.N. (1992) Modern methods of perturbation theory in calculation of hydroacoustic fields [Vestn. Mosk. un-ta Seriya 3, Vol. 33(2), pp. 49–56] (in Russian)

    Google Scholar 

  • DeSanto J.A. (ed) (1979) Ocean Acoustics [Springer-Verlag]

    Google Scholar 

  • Doolittle R., Tolstoy A., Buckingham M. (1988) Experimental confirmation of horizontal refraction of cw acoustic radiation from a point source in wedge-shaped ocean environment [J. Acoust. Soc. Am., Vol. 83(6), pp. 2117–2125]

    Google Scholar 

  • Fock V.A. (1965), Electromagnetic Diffraction and Propagation Problems. Pergamon, New York, pp. 213–234.

    Google Scholar 

  • Frisk G.V. (1988) Inverse methods in ocean bottom acoustics [WHOI, Woods Hole, MA, USA, 32 p]

    Google Scholar 

  • Frisk G.V., (1994) “Ocean and Seabed Acoustics”, Prentice Hall, Saddle River, N.J., 299 pp

    Google Scholar 

  • Gazarian Yu.L. (1958) The sound field generated by a point source in a lying on a half-space [Sov. Phys. Acoust., Vol. 4(3), pp. 237–242]

    Google Scholar 

  • Gindler I.V. (1990) Perturbation theory for plane-layered open acoustic waveguides [Sov. Phys. Acoust., vol. 36(4), pp. 349–352]

    Google Scholar 

  • Jensen F.B. (1981) Sound propagation in shallow water [J. Acoust. Soc. Am. Vol. 70(5), pp. 1397–1406]

    Google Scholar 

  • F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, (1994). “Computational Ocean Acoustics”, AIP Press, 612 pages

    Google Scholar 

  • G. Jin, Lynch, J.F., Chiu, C.S. and Miller, J.H. (1996) “A theoretical and simulation study of acoustic normal mode coupling effects due to the Barents Sea Polar Front, with applications to acoustic tomography and matched-field processing.” J. Acoust. Soc. Am. Volume 100, Issue 1, pp. 193–205.

    Google Scholar 

  • Katsnelson B.G., Pereselkov (2000) Horizontal refraction of low frequency sound field due to soliton packets in shallow water. Acoustical Physics

    Google Scholar 

  • B. Katsnelson, J. Lynch and A. Tsoidze, (2007),“Space-frequency distribution of sound field intensity in the vicinity of a temperature front in shallow water”, [Acoustical Physics, 53(5), 611–617].

    Google Scholar 

  • Kravtsov Yu.A., Kuz’kin V.M., Petnikov V.G. (1984) Perturbation calculation of the horizontal refraction of sound waves in a shallow sea [Sov. Phys. Acoust., Vol. 30(1), pp. 45–47]

    Google Scholar 

  • Kravtsov Yu.A., Kuz’kin C.M., Petnikov V.G. (1984) Wave diffraction by regular scatterers in multimode waveguides [Sov. Phys. Acoust., Vol. 30(3), pp. 199–202]

    Google Scholar 

  • Kravtsov Yu.A., Kuz’kin V.M. and Petnikov V.G. (1988) Resolvability of rays and modes in an ideal waveguide [Sov. Phys. Acoust., vol. 34(4), pp. 387–390]

    Google Scholar 

  • Kravtsov Yu.A., Orlov Yu.I. (1990) Geometrical optics of inhomogeneous media [Springer-Verlag]

    Google Scholar 

  • Kuperman W.A., Ferla M.C. (1985) A shallow water experiment to determine the source spectrum level of wind generated noise [J. Acoust. Soc. Am.., Vol. 77(6), pp. 2067– 2073]

    Google Scholar 

  • Leontovich M.A., and Fock V.A., (1946) “Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation,” J. Exp. Theor. Phys. 16, pp 557–573

    Google Scholar 

  • Lynch J.L., Jin G., Pawlowich R., Ray D., Plueddemann A.J., Chlu C., Miller J.H., Bourke R.H., Parsons A.R., Muench R. (1996) Acoustic travel-time perturbations due to shallow water internal waves and tides in the Barents Sea polar front: theory and experiment [J. Acoust. Soc. Am., Vol. 99(2), pp. 803–821]

    Google Scholar 

  • Munk, W., and C. Wunsch (1983), Ocean Acoustic Tomography: Rays and Modes, Rev. Geophys., 21(4), 777–793.

    Google Scholar 

  • Ocean acoustics (ed) L.M. Brekhovskikh. (1974) Moscow, Nauka, in Russian

    Google Scholar 

  • Pekeris C.L. (1948) Theory of propagation of explosive sound in shallow water [Geol. Soc. Am. Mem., Vol. 27, pp. 1–117]

    Google Scholar 

  • Rajan S.D., Lynch J.F., Frisk G.V. (1987) Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water [J. Acoust. Soc. Am., Vol. 82(3), pp. 998– 1017]

    Google Scholar 

  • Schiff L., (1968) “Quantum Mechanics.” McGraw-Hill, New York NY. 544 pages.

    Google Scholar 

  • Stickler D.C, Ammicht E. (1980) Uniform asymptotic evaluation of the continuous spectrum contribution for the Pekeris model [J. Acoust. Soc. Am., Vol. 67(6), p. 2018– 2024]

    Google Scholar 

  • Tappert F.D. (1977), “The parabolic approximation method,” in Wave Propagation and Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis, Lecture Notes in Physics 70 Springer-Verlag, New York

    Google Scholar 

  • Tindle C.T., Stamp, A.P, and Guthrie, K.M. (1976), “Virtual modes and the surface boundary condition in underwater acoustics.” [Journal of Sound and Vibration, Volume 49, Issue 2, p. 231–240].

    Google Scholar 

  • Turbiner A.V. (1984) The eigenvalue spectrum in quantum mechanics and the nonlinearisation procedure [Sov. Phys. Uspekhi, Vol. 27(9), pp. 668–694]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Katsnelson .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katsnelson, B., Petnikov, V., Lynch, J. (2012). Foundations of the Theory of Propagation of Sound. In: Fundamentals of Shallow Water Acoustics. The Underwater Acoustics Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9777-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9777-7_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9776-0

  • Online ISBN: 978-1-4419-9777-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics