Skip to main content

Development and Approval of Inhaled Respiratory Drugs: A US Regulatory Science Perspective

  • Chapter
  • First Online:
Controlled Pulmonary Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

This chapter focuses on the regulatory science aspects of the postdiscovery development and approval of the inhaled respiratory drug products intended for local action. It provides a brief treatise of the CMC, in vitro and in vivo evaluations for development and approval of inhalation aerosols in the US. In addition, it includes a brief discussion on scientific considerations related to potential extended-release inhalation drug products. Regulatory paradigms for approval of generic inhalation drug products are also discussed.

This article represents the personal opinions of the authors, and does not necessarily represent the views or policies of any regulatory agency or organization(s) of the author current or past affiliation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guidance for Industry: Applications Covered by Section (505(B)(2))-1999

    Google Scholar 

  2. Conner D, Davit B (2005) Bioequivalence and drug product assessment, in vivo. In: Shargel L, Kanfer I (eds) Generic drug product development: solid oral dosage forms. Marcel Dekker, New York, pp 225–227

    Google Scholar 

  3. Ng R (2004) Drugs: from discovery to approval. Wiley, New Jersey

    Google Scholar 

  4. 21 Code of Federal Regulations, Part 3

    Google Scholar 

  5. Purewal TS (1998) Formulations of metered dose inhalers. In: Purewal TS, Grant DG (eds) Metered dose inhaler technology. CRC Press, Boca Raton, pp 9–68

    Google Scholar 

  6. Smyth H (2003) The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Del Rev 55:807–808

    Article  CAS  Google Scholar 

  7. Noakes TJ (1995) CFCs, their replacements, and the ozone layer. J Aerosol Med 8(Supp 1):S3–S7

    PubMed  Google Scholar 

  8. Boulet LP (1998) The ozone layer and metered dose inhalers. Can Respir J 5:176–179

    PubMed  CAS  Google Scholar 

  9. McDonald KJ, Martin GP (2000) Transition to CFC-free metered dose inhalers – into the new millennium. Int J Pharm 201:89–107

    Article  PubMed  CAS  Google Scholar 

  10. Tsai WT (2005) An overview of environmental hazards and exposure risk of hydroflurocarbons (HFCs). Chemosphere 61:1539–1547

    Article  PubMed  CAS  Google Scholar 

  11. Ganderton D, Kassem NM (1992) Dry powder inhalers. Adv Pharmaceut Sci 6:165–191

    CAS  Google Scholar 

  12. Timsina MP, Martin GP, Marriot C, Ganderton D, Yianneskis M (1994) Drug delivery to the respiratory tract using dry powder inhalers. Int J Pharmaceut 101:1–13

    Article  CAS  Google Scholar 

  13. Newman SP, Busse WW (2002) Evolution of dry powder inhaler design, formulation and performance. Respir Med 96:293–304

    Article  PubMed  CAS  Google Scholar 

  14. Smith IJ, Parry-Billing M (2003) The inhaler of the future? A review of dry powder inhalers on the market today. Pulm Pharmacol Ther 16:79–95

    Article  PubMed  CAS  Google Scholar 

  15. Dunbar CA, Hickey AJ, Holzner P (1998) Dispersion and characterization of pharmaceutical dry powder aerosols. KONA 16:7–45

    CAS  Google Scholar 

  16. Draft Guidance for Industry: Metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products: Chemistry, manufacturing and control documentation (1998). http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064979.htm. Accessed 10 Jan 2011

  17. Cegla UH (2004) Pressure and inspiratory flow characteristics of dry powder inhalers. Respir Med 98(Suppl A):S22–S28

    Article  PubMed  Google Scholar 

  18. Tarsin W, Assi KH, Chrystyn H (2004) In vitro intra- and inter-inhaler flow rate-dependent dosage emission from a combination of budesonide and eformoterol in a dry powder inhaler. J Aerosol Med 17:5–32

    Article  CAS  Google Scholar 

  19. Clark AR, Hollingworth AM (1993) The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers. J Aerosol Med 6:99–110

    Article  PubMed  CAS  Google Scholar 

  20. Olsson B, Asking L (1994) Critical aspects of the functioning of inspiratory flow driven inhalers. J Aerosol Med 7(Suppl 1):S43–S47

    PubMed  CAS  Google Scholar 

  21. Richards R, Simpson SF, Renwick AG, Holgate ST (1988) Inhalation rate of sodium cromoglycate determines plasma pharmacokinetics and protection against AMP-induced bronchoconstriction in asthma. Eur Respir J 1:896–901

    PubMed  CAS  Google Scholar 

  22. Engel T, Scharling B, Skovsted BA, Heinig JH (1992) Effects, side effects and plasma concentrations of turbutaline in adult asthmatics after inhaling from a dry powder inhaler device at different inhalation flows and volumes. Br J Clin Pharmacol 33:439–444

    PubMed  CAS  Google Scholar 

  23. Chege JK, Chrystyn H (2000) The relative bioavailability of salbutamol to the lung using urinary excretion following inhalation from a novel dry powder inhaler: the effect of inhalation rate and formulation. Respir Med 94:51–56

    Article  PubMed  CAS  Google Scholar 

  24. Pedersen S, Hansen OR, Funglsang G (1990) Influence of inspiratory flow rate upon the effect of Turbuhaler. Archiv Dis Child 65:308–319

    Article  CAS  Google Scholar 

  25. Munzel U, Marschall K, Fyrnys BA, Wedel M (2005) Variability of fine particle dose and lung deposition of budesonide delivered through two multidose dry powder inhalers. Curr Med Res Opin 21:827–834

    Article  PubMed  CAS  Google Scholar 

  26. Bronsky EA, Grossman J, Henis MJ, Gallo PP, Yegen U, Della Cioppa G, Kottakis J, Mehra S (2004) Inspiratory flow rates and volumes with the Aerolizer dry powder inhaler in asthmatic children and adults. Curr Med Res Opin 20:131–137

    Article  PubMed  Google Scholar 

  27. Gauld LM, Briggs K, Robinson P (2003) Peak respiratory flows in children with cystic fibrosis. J Paediatr Child Health 39:210–213

    Article  PubMed  CAS  Google Scholar 

  28. Kamps AW, Brand PL, Roorda RJ (2004) Variation in peak inspiratory flow through dry powder inhalers in children with stable and unstable asthma. Pediatr Pulmonol 37:65–70

    Article  PubMed  Google Scholar 

  29. Bentur L, Mansour Y, Hamzani Y, Beck R, Elias N, Amirav I (2004) Measurement of inspiratory flow in children with acute asthma. Pediatr Pulmonol 38:304–307

    Article  PubMed  Google Scholar 

  30. Nsour WM, Alldred A, Corrado OJ, Chrystyn H (2001) Measurement of peak inhalation rates with an In-check Meter® to identify an elderly patient’s ability to use a Turbuhaler®. Respir Med 95:965–968

    Article  PubMed  CAS  Google Scholar 

  31. Spiriva Handihalerâ„¢ approved product label (2009). http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021395s029lbl.pdf. Accessed 22 Jan 2011

  32. Foradil Aerolizerâ„¢ approved product label (2001). http://www.accessdata.fda.gov/drugsatfda_docs/label/2001/20831s2lbl.pdf. Accessed 22 Jan 2011

  33. Advair Diskusâ„¢ approved product label (2010). http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021077s042lbl.pdf. Accessed 22 Jan 2011

  34. Pulmicort Flexihalerâ„¢ approved product label (2010). http://www.accessdata.fda.gov/approvedproductlabeldrugsatfda_docs/label/2010/021949s006lbl.pdf. Accessed 22 Jan 2011

  35. Asmanex Twisthaerâ„¢ approved product label. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021067s013lbl.pdf. Accessed 22 Jan 2011

  36. Tibbatts J, Mendes PJ, Villax P (2010) Understanding the power requirements for efficient dispersion in powder inhalers: Comparing CFD predictions and experimental measurement. In: Byron P, Peart J, Suman J, Farr SJ, Young PM (eds) Respiratory drug delivery, vol 1. Davis Healthcare International Publishing, River Grove, pp 323–330

    Google Scholar 

  37. Tibbatts J (2009) From formulation to fine particle fraction – simulating the influence of both formulation and device on fluidization and deaggregation. In: Byron P, Peart J, Suman J, Farr SJ, Young PM (eds) RDD Europe 2009. Davis Healthcare International Publishing, River Grove, pp 293–296

    Google Scholar 

  38. Telko MJ, Hickey AJ (2005) Dry powder inhaler formulation. Respir Care 50(9):1209–1227

    PubMed  Google Scholar 

  39. Hooton JC, Jones MD, Harris H, Shur J, Price R (2008) The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach. Drug Dev Ind Pharm 34:974–983

    Article  PubMed  CAS  Google Scholar 

  40. Edge S, Mueller S, Price R, Shur J (2008) Factors affecting defining the quality and functionality of excipients used in the manufacture of dry powder inhaler products. Drug Dev Ind Pharm 34(9):966–973

    Article  PubMed  CAS  Google Scholar 

  41. 21 Code of Federal Register 200.51

    Google Scholar 

  42. Guidance for Industry – Inhalation Drug Products Packaged in Semipermeable Container Closure Systems, Draft Guidance: U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, July 2002. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071725.pdf. Accessed 27 Jan 2011

  43. Guidance for Industry – Q3A Impurities in New Drug Substances, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, June 2008 (ICH Revision 2). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073385.pdf. Accessed 27 Jan 2011

  44. Guidance for Industry Q8(R2): Pharmaceutical Development, U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, (CDER) Center for Biologics Evaluation and Research (CBER), November 2009 (ICH Revision 2). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073507.pdf. Accessed 27 Jan 2011

  45. Guidance for Industry Q9: Quality Risk Management, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, June 2006. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073511.pdf. Accessed 27 Jan 2011

  46. Guidance for Industry Q10: Pharmaceutical Quality System, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, April 2009. In the ICH Regions. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, February 2008. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073517.pdf. Accessed 27 Jan 2011

  47. Guidance for Industry Q4B: Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions. February 2008. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073405.pdf. Accessed 27 Jan 2011

  48. Guidance for Industry – Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, December 2000. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm134966.htm. Accessed 27 Jan 2011

  49. Guidance for Industry – Q2 (R1) Validation of Analytical Procedures: Text and Methodology, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, November 2005

    Google Scholar 

  50. Guidance for Industry – Q3B(R2) Impurities in New Drug Products, U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, July 2006 (ICH Revision 2). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073389.pdf. Accessed 27 Jan 2011

  51. Guidance for Industry – Integration of Dose-Counting Mechanisms into MDI Drug Products – Clinical Medical: U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research, Clinical Medical, March 2003. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071731.pdf. Accessed 27 Jan 2011

  52. Guidance for Industry – Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products – Chemistry, Manufacturing, and Controls Documentation: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), July 2002. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070575.pdf. Accessed 27 Jan 2011

  53. Guidance for Industry – Container Closure Systems for Packaging Human Drugs and Biologics – Chemistry, Manufacturing, and Control Documentation: U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), May 1999. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070551.pdf. Accessed 27 Jan 2011

  54. Norwood D, Paskiet D, Ruberto M, Feinberg T, Schroeder A, Poochikian G, Wang Q, Deng T, DeGrazio F, Munos M, Nagao L (2008) Best practices for extractables and leachables in orally inhaled and nasal drug products: an overview of the PQRI recommendations. Pharm Res 25(4):727–735

    Google Scholar 

  55. Ball D, Blanchard J, Jacobson-Kram D, McClellan RO, McGovern T, Norwood DL, Vogel WM, Wolff R, Nagao L (2007) Development of safety qualification thresholds and their use in orally inhaled and nasal drug product evaluation. Toxicol Sci 97:226–236

    Article  PubMed  CAS  Google Scholar 

  56. Guidance for Industry Q1A(R2) Stability Testing of New Drug Substances and Products U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, November 2003. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073369.pdf. Accessed 27 Jan 2011

  57. Dalby R, Byron P (2009) In vitro assessment of inhaled products. In: Nemann S, Anderson P, Byron P, Dalby R, Peart J (eds) Respiratory drug delivery: essential theory and practice. Respiratory Drug Delivery Online/VCU, Richmond, pp 59–96

    Google Scholar 

  58. Singh GJP (2010) Locally acting nasal and inhalation drug products: regulatory and bioequivalence perspective. In: Shargel L, Kanifer I (eds) Generic drug development: special dosage forms. Informa Health Care, New York, pp 189–217

    Google Scholar 

  59. Washington C (1998) Particle size analysis in inhalation therapy. In: Purewal TS, Grant DW (eds) Metered dose inhalation technology. CRC Press, Boca Raton, pp 117–145

    Google Scholar 

  60. Kippax P, Krarup G, Suman JD (2004) Application of droplet sizing: Manual versus automated actuation of nasal sprays. Pharmaceut Technol (Outsourcing Resources), August 2004 30–39

    Google Scholar 

  61. Ranucci J (1992) Dynamic plume-particle size analysis using laser diffraction. Pharm Tech 16:108–114

    Google Scholar 

  62. Hollingworth GW (1993) Particle size analysis of therapeutic aerosols. In: Moren F, Dolovich MB, Newhouse MT, Newman SP (eds) Aerosols in medicine. principles, diagnosis and therapy. Elsevier, Amsterdam, pp 351–374

    Google Scholar 

  63. Kippax P (2005) Measuring particle size by laser diffraction techniques. Paint & Coating Indus. August 2005

    Google Scholar 

  64. Cheng YS, Holmes BS, Gao BS, Guilmete RA, Li S, Surakitbanharn Y, Rowlings C (2001) Characterization of nasal spray pumps and deposition patterns in replica of the human nasal airway. J Aerosol Med 14:267–280

    Article  PubMed  CAS  Google Scholar 

  65. Cummings RH, Riebe M (1998) Analytical Development and Testing. In: Purewal TS, Grant DW (eds) Metered dose inhaler technology. CRC Press, Boca Raton, pp 147–185

    Google Scholar 

  66. Guidance for Industry (Draft): Bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for local action (2003) U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070111.pdf. Accessed 27 Jan 2011

  67. DeGeorge JJ, Ahn CH, Andrews PA, Brower ME, Choi YS, Chun MY, Du T, Lee-Ham DY, McGuinn WD, Pei L, Sancilio LF, Schmidt W, Sheevers HV, Sun CJ, Tripathi S, Vogel WM, Whitehurst V, Williams S, Taylor AS (1997) Considerations for toxicology studies of respiratory drug products. Regul Toxicol Pharmacol 25:189–193

    Article  PubMed  CAS  Google Scholar 

  68. Wolff RK, Dorato MA (1993) Toxicologic testing of inhaled pharmaceutical aerosols. Crit Rev Toxicol 23:343–369

    Article  PubMed  CAS  Google Scholar 

  69. Casarosa P, Bouyssou T, Germeyer S, Schnapp A, Gantner F, Pieper M (2009) Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs. J Pharmacol Exp Ther 30:660–668

    Article  CAS  Google Scholar 

  70. Pauluhn J (2008) Inhalation toxicology: methodological and regulatory challenges. Exp Toxicol Pathol 60:111–124

    Article  PubMed  CAS  Google Scholar 

  71. Owen K, Beck SL, Damment SJP (2010) The preclinical toxicology of salmeterol hydroxynaphthoate. Hum Exp Toxicol 29:393–407

    Article  PubMed  CAS  Google Scholar 

  72. Long RE (2004) Role of toxicology and Toxicokinetics in drug development. In: Bonate PL, Howard DR (eds) Pharmacokinetics in drug development: regulatory and development paradigms. AAPS, Arlington, pp 87–103

    Google Scholar 

  73. Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powel R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40:1399–1418

    PubMed  CAS  Google Scholar 

  74. Ette EI, Garg V, Jayaraj A (2004) Drug development: a rational approach. In: Bonate PL, Howard DR (eds) Pharmacokinetics in drug development: regulatory and development paradigms. AAPS, Arlington, pp 3–36

    Google Scholar 

  75. Guidance for Industry: Formal Meetings With Sponsors and Applicants for PDUFA Products (2000) U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM079744.pdf. Accessed 27 Jan 2011

  76. Ette EI, Williams P, Sun H, Fardiran E, Ajayi FO, Onyiah LC (2001) The process of knowledge discovery from large pharmacokinetic data sets. J Clin Pharmacol 41:25–34

    Article  PubMed  CAS  Google Scholar 

  77. Williams P, Ette EI (2000) The role of population pharmacokinetics in drug development in the light of the FDA guidance on population pharmacokinetics. Clin Pharmacokinet 39:185–395

    Article  Google Scholar 

  78. Chowdhury BA (2007) Regulatory demands of clinical testing protocols for powder inhalers in the USA. In: Dalby RN, Byron P, Peart J, Suman JD (eds) Respiratory drug delivery Europe 2007. Davis Healthcare, River Grove, pp 101–108

    Google Scholar 

  79. NHLBI Guidelines for the Diagnosis and Management of Asthma (2007). http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm. Accessed 20 Jan 2011

  80. American Thoracic Society (2000) Guidelines for methacholine and exercise challenge testing −1999. Am J Respir Crit Care Med 161:309–329

    Google Scholar 

  81. Wong BJ, Hargreave FE (1993) Bioequivalence of metered-dose inhaled medications. J Allergy Clin Immunol 92:373–379

    Article  PubMed  CAS  Google Scholar 

  82. Clark DJ, Lipworth BJ (1997) Dose-response of inhaled drugs in asthma: an update. Clin Pharmacokinet 32:58–74

    Article  PubMed  CAS  Google Scholar 

  83. Barnes PJ, Pedersen S, Busse WW (1998) Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med 157:S1–S53

    PubMed  CAS  Google Scholar 

  84. Parameswaran K, Leigh R, O’Byrne PM, Kelly MM, Goldsmith CH, Hargreave FE, Dolovich M (2003) Clinical models to compare the safety and efficacy of inhaled corticosteroids in patients with asthma. Can Respir J 10:27–34

    PubMed  Google Scholar 

  85. ATS/ERS COPD Guidelines (2004). http://www.thoracic.org/clinical/copd-guidelines/resources/copddoc.pdf. Accessed 27 Jan 2011

  86. Guidance for Industry: Chronic Obstructive Pulmonary Disease: Developing Drugs for Treatment. November 2007. Center for Drug Evaluation and Research, US FDA. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071575.pdf. Accessed 20 Jan 2011

  87. Fishman AP (1988) The spectrum of chronic obstructive disease of the airways. In: Fishman AP (ed) Pulmonary diseases and disorders, vol 2, 2nd edn. McGraw-Hill, New York, pp 1159–1171

    Google Scholar 

  88. Reid LM (1988) Chronic obstructive pulmonary disease. In: Fishman AP (ed) Pulmonary diseases and disorders, vol 2, 2nd edn. McGraw-Hill, New York, pp 1247–1272

    Google Scholar 

  89. Jones R, Ostrem A (2011) Optimizing pharmacological maintenance treatment for chronic obstructive pulmonary disease in primary care. Prim Care Respir J 20:33–45

    Article  PubMed  Google Scholar 

  90. Grippi MA, Metzger LF, Krupinski AV, Fishman AP (1988) Pulmonary function testing. In: Fishman AP (ed) Pulmonary diseases and disorders, vol 3, 2nd edn. McGraw-Hill, New York, pp 2469–2532

    Google Scholar 

  91. Morgan WKC, Pearson MG (1988) Pulmonary function tests in determining disability. In: Fishman AP (ed) Pulmonary diseases and disorders, vol 3, 2nd edn. McGraw-Hill, New York, pp 2533–2541

    Google Scholar 

  92. Hochhaus G, Schmidt E-W, Rominger KL, Mollman H (1992) Pharmacokinetic/dynamic correlation of pulmonary and cardiac effects of fenotrol in asthmatic patients after different routes of administration. Pharm Res 9:291–297

    Article  PubMed  CAS  Google Scholar 

  93. Kemsford R, Handel M, Mehta R, De Silva M, Daley-Yates P (2005) Comparison of the systemic pharmacodynamic effects and pharmacokinetics of salmeterol delivered by CFC propellant and non-CFC propellant metered dose inhalers in healthy subjects. Respir Med 99(Suppl A):S11–S19

    Article  Google Scholar 

  94. Rosekranz B, Rouzier R, Kruse M, Dobson C, Ayre G, Horowitz A, Fitoussi S (2006) Safety and tolerability of high-dose of formoterol (via Aerosolizer®) and salbutamol in patients with chronic obstructive pulmonary disease. Respir Med 100:666–672

    Article  Google Scholar 

  95. Singh S, Loke YK, Furberg CD (2008) Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA 300(12):1439–1450

    Article  PubMed  CAS  Google Scholar 

  96. Salpeter SR (2009) Do inhaled anticholinergics increase or decrease the risk of major cardiovascular events? A synthesis of the available evidence. Drugs 69:2025–2033

    Article  PubMed  CAS  Google Scholar 

  97. Wilson AM, McFarlane LC, Lipworth BJ (1998) Effects of repeated once daily dosing of three intranasal corticosteroids on basal and dynamic measures of hypothalmic-pituitary-adrenal-axis activity. J Allergy Clin Immunol 101:470–474

    Article  PubMed  CAS  Google Scholar 

  98. Fardon TC, Lee DKC, Haggart K, McFarlane LC, Lipworth BJ (2004) Adrenal suppression with dry powder formulations of fluticasone propionate and mometasone furoate. Am J Respir Crit Care Med 170:760–766

    Article  Google Scholar 

  99. Allen DB (2002) Safety of inhaled corticosteroids in children. Pediatr Pulmonol 33:208–220

    Article  PubMed  Google Scholar 

  100. Todd GRG (2003) Adrenal crisis due to inhaled steroids is underestimated. Arch Dis Child 88:554–555

    Article  PubMed  CAS  Google Scholar 

  101. Wolthers OD, Pedersen S (1996) Measures of systemic activity of inhaled corticosteroids in children: a comparison of urine cortisol excretion and knemometry. Respir Med 89:347–349

    Article  Google Scholar 

  102. Lipworth BJ, Seckl JR (1997) Measures for detecting systemic bioactivity with inhaled and intranasal corticosteroids. Thorax 52:476–482

    Article  PubMed  CAS  Google Scholar 

  103. Wohl ME, Majzoub JA (2000) Asthma, steroids, and growth. New Eng J Med 343:1113–1114

    Article  PubMed  CAS  Google Scholar 

  104. Wolthers OD (2000) Impact of inhaled and intranasal corticosteroids on the growth of children. BioDrugs 13:347–357

    Article  PubMed  CAS  Google Scholar 

  105. Altintas DU, Karakoc GB, Can S, Yilmaz M, Kendirli SG (2005) The effects of long term use of inhaled corticosteroids on linear growth, adrenal function and bone mineral density in children. Allergol Immunopathol (Madr) 33:204–209

    Article  Google Scholar 

  106. Halpern MT, Schmier JK, Van Kerkhove MD, Watkins M, Kalberg CJ (2004) Impact of long-term inhaled corticosteroid therapy on bone mineral density: results of a meta-analysis. Ann Allergy Asthma Immunol 92:201–207

    Article  PubMed  CAS  Google Scholar 

  107. Richy F, Bousquet J, Ehrlich GE, Meunier PJ, Israel E, Morii H, Devogelaer JP, Peel N, Haim M, Bruyere O, Reginster JY (2003) Inhaled corticosteroids effects on bone in asthmatic and COPD patients: a quantitative systematic review. Osteoporos Int 14(3):179–190

    PubMed  CAS  Google Scholar 

  108. Advair® HFA Product Label (2010) http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021254s013lbl.pdf. Accessed 23 Jan 2010

  109. Symbicort® Inhalation Aerosol Product Label (2010) http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021929s021lbl.pdf. Accessed 23 Jan 2011

  110. Dulera® Product Label (2010) http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022518s000lbl.pdf. Accessed 23 Jan 2011

  111. Combivent® Inhaltion Aerosol Product Label (2009) http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020291s027lbl.pdf. Accessed 23 Jan 2011

  112. CDER Data Standard Manual, Dosage Forms, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, last updated 4/30/09. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/DataStandardsManualmonographs/ucm071666.htm

  113. The United States Pharmacopeial Convention, USP 33 <1151>

    Google Scholar 

  114. Adi H, Young PM, Chan HK, Salama R, Traini D (2010) Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm 36;119–126

    Google Scholar 

  115. Learoyd TP, Burrows JL, French E, Seville PC (2010) Sustained delivery of salbutamol and beclomethasone from spray-dried double emulsions. J Microencap 27:1–9

    Article  CAS  Google Scholar 

  116. Learoyd TP, Burrows JL, French E, Seville PC (2008) Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur J Pharm Biopharm 68:224–234

    Article  PubMed  CAS  Google Scholar 

  117. Salama R, Susan H, Chan HK, Traini D, Young PM (2008) Preparation and characterization of controlled release co-spray dried drug-polymer microparticles for inhalation 1: influence of polymer concentration on physical and in vitro characteristics. Eur J Pharm Biopharm 69:486–495

    Article  PubMed  CAS  Google Scholar 

  118. Salama R, Traini D, Chan HK, Young PM (2008) Preparation and characterization of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in-vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm 70:145–152

    Article  PubMed  CAS  Google Scholar 

  119. Uppoor RS, Marroum PJ (2004) Regulatory considerations for extended release dosage forms and in vitro (dissolution)/in vivo (bioavailability) correlations. In: Sahajwall CG (ed) New drug development: regulatory paradigms for clinical pharmacology and biopharmaceutics. Marcel Dekker, New York, pp 417–448

    Google Scholar 

  120. Foucher P, Biour M, Blayac JP, Godard P, Sgro C, Kuhn M, Vergnon JM, Vervloet D, Pfitzenmeyer P, Ollagnier M, Mayaud C, Camus P (1997) Drugs that may injure the respiratory system. Eur Respir J 10:265–279

    Article  PubMed  CAS  Google Scholar 

  121. Rossi SE, Erasmus JJ, McAdams HP, Sporn TA, Goodman PC (2000) Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics 20:1245–1259

    PubMed  CAS  Google Scholar 

  122. Erasmus JJ, McAdams HP, Rossi SE (2002) Drug-induced lung injury. Semin Roentgenol 37:72–81

    Article  PubMed  Google Scholar 

  123. Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  PubMed  CAS  Google Scholar 

  124. Singh S (2010) Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10:7906–7918

    Article  PubMed  CAS  Google Scholar 

  125. Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomed 5:803–809

    Google Scholar 

  126. Rogueda PG, Traini D (2007) The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv 4:595–606

    Article  PubMed  CAS  Google Scholar 

  127. Rogueda PG, Traini D (2007) The nanoscale in pulmonary delivery. Part 2: formulation platforms. Expert Opin Drug Deliv 4(6):607–620

    Article  PubMed  CAS  Google Scholar 

  128. Azarmi S, Roa WH, Löbenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 260:863–875

    Article  CAS  Google Scholar 

  129. Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29(1):196–212

    Article  PubMed  CAS  Google Scholar 

  130. Mansour HM, Rhee YS, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomed 4:299–319

    Article  CAS  Google Scholar 

  131. Bur M, Henning A, Hein S, Schneider M, Lehr CM (2009) Inhalative nanomedicine – opportunities and challenges. Inhal Toxicol 21(Suppl 1):137–143

    Article  PubMed  CAS  Google Scholar 

  132. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R (1997) Large porous particles for pulmonary drug delivery. Science 276:1868–1871

    Article  PubMed  CAS  Google Scholar 

  133. Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 29:L400–L411

    Article  CAS  Google Scholar 

  134. Bonner JC (2010) Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7(2):138–141

    Article  PubMed  CAS  Google Scholar 

  135. Harush-Frenkel O, Bivas-Benita M, Nassar T, Springer C, Sherman Y, Avital A, Altschuler Y, Borlak J, Benita S (2010) A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol 246:83–90

    Article  PubMed  CAS  Google Scholar 

  136. Yang W, Tam J, Miller DA, Zhou J, McConville JT, Johnston KP, Williams RO (2008) High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 361:177–188

    Article  PubMed  CAS  Google Scholar 

  137. Cai Z, Wang Y, Zhu LJ, Liu ZQ (2010) Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab 11(2):197–207

    Article  PubMed  CAS  Google Scholar 

  138. Peng Q, Gong T, Zuo J, Liu J, Zhao D, Zhang Z (2008) Enhanced oral bioavailability of salvianolic acid B by phospholipid complex loaded nanoparticles. Pharmazie 63:661–666

    PubMed  CAS  Google Scholar 

  139. Guidance for Industry: Topical Dermatologic Corticosteroids – In Vivo Bioequivalence (1995) Center for Drug Evaluation and Research, US FDA, Rockville. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070234.pdf. Accessed January 26, 2011

  140. Lee SL, Adams WP, Li BV, Conner DP, Chowdhury BA, Yu LX (2009) In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. AAPS J 11:414–423

    Article  PubMed  CAS  Google Scholar 

  141. Singh GJP, Adams WP (2005) US regulatory and scientific considerations for approval of generic locally acting orally inhaled and nasal drug products. In: Dalby RN, Byron P, Peart J, Suman JD (eds) Respiratory drug delivery – Europe 2005: a regulatory and analytical symposium. Davis Healthcare, River Grove, pp 115–125

    Google Scholar 

  142. Guidance for Industry: Bioavailability and bioequivalence studies for orally administered drug products – General considerations (2003) U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070124.pdf. Accessed 27 Jan 2011

  143. Interim guidance for documentation of in vivo bioequivalence of albuterol inhalation aerosols (metered dose inhalers) (1994) Office of Generic Drugs, US FDA, Rockville (withdrawn)

    Google Scholar 

  144. Singh GJP (2010) Evolution of regulatory and scientific paradigms for establishing equivalence of systemic exposure from orally inhaled drugs: Current status and possible challenges. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery. Davis Healthcare, River Grove, pp 249–260

    Google Scholar 

  145. Guidance for Industry: Bioanalytical method validation (2001) U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf. Accessed 27 Jan 2011

  146. Guidance for Industry: Statistical approaches to establishing bioequivalence (2001). U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070244.pdf. Accessed 27 Jan 2011

  147. Patnaik RN (2004) Bioequivalence assessment: Approaches, designs and statistical considerations. In: Sahajwala CG (ed) New drug development: regulatory paradigms for clinical pharmacology and biopharmaceutics. Marcel Dekker, New York, pp 561–586

    Chapter  Google Scholar 

  148. Ahrens RC (2001) On comparing inhaled beta adrenergic agonists. Ann Allergy 67:296–298

    Google Scholar 

  149. Parameswaran K (1999) Concepts of establishing clinical bioequivalence of chlorofluorocarbon and hydrofluoroalkane [beta]-agonists. J Allergy Clin Immunol 104:S243–S245

    Article  PubMed  CAS  Google Scholar 

  150. Parameswaran K, Inman MD, Elkholm BP, Morris MM, Summers E, O’Byrne PM, Hargreave FE (1999) Protection against methacholine bronchospasm to assess relative potency of inhaled ß2-agonist. Am J Respir Crit Care Med 160:354–357

    PubMed  CAS  Google Scholar 

  151. Creticos PS, Adams WP, Petty BG, Lewis LD, Singh GJP, Khattignavong AP, Molzon JA, Martinez MN, Lietman PS, Williams RL (2002) A methacholine challenge dose-response study for development of pharmacodynamic bioequivalence methodology for albuterol metered dose inhalers. J Allergy Clin Immunol 110:713–720

    Article  PubMed  CAS  Google Scholar 

  152. Stewart BA, Ahrens RC, Carrier S, Frosolono M, Lux CR, Han SH, Milavetz G (2000) Demonstration of in vivo bioequivalence of a generic albuterol metered-dose inhaler to Ventolin. Chest 117:714–721

    Article  PubMed  CAS  Google Scholar 

  153. Gross NJ, Petty TL, Friedman M, Skorodin MS, Silvers GW, Donohue JF (1989) Dose response to iprtropium as a nebulized solution in patients with chronic obstructive pulmonary disease: a three center study. Am Rev Respir Dis 139:1188–1191

    PubMed  CAS  Google Scholar 

  154. Maesen FP, Smeets JJ, Costongs MA, Wald FD, Cornelissen PJ (1993) Ba 679 Br, a new long-acting antimuscarinic bronchodilator: a pilot dose response study in COPD. Eur Respir J 6:1031–1036

    PubMed  CAS  Google Scholar 

  155. Maesen FP, Smeets JJ, Sledsens TJ, Wald FD, Cornelissen PJ (1995) Tiotropium bromide, a new long-acting antimuscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD). Eur Respir J 8:1506–1513

    PubMed  CAS  Google Scholar 

  156. Barnes PJ (2004) The role of anticholinergics in chronic obstructive pulmonary disease. Am J Med 117(Suppl 12A):24S–32S

    PubMed  CAS  Google Scholar 

  157. Gross NJ (2006) Anticholinergic agents in asthma and COPD. Eur J Pharmacol 533:36–39

    Article  PubMed  CAS  Google Scholar 

  158. Weder MM, Donohue JF (2005) Role of bronchodilators in chronic obstructive pulmonary disease. Semin Respir Crit Care Med 26:221–234

    Article  PubMed  Google Scholar 

  159. Terzano C, Petroianni A, Ricci A, D’Antoni L, Allegra L (2004) Early protective effects of tiotropium bromide in patients with airway hyperresponsiveness. Eur Rev Med Pharmacol Sci 8:259–264

    PubMed  CAS  Google Scholar 

  160. Sposato B, Mariotta S, Ricci A, Bruno P, Terzano C, Mannino F (2005) The influence of ipratropium bromide in the recovery phase of methacholine-induced bronchospasm. Eur Rev Med Pharmacol Sci 9:117–123

    PubMed  CAS  Google Scholar 

  161. O’Connor BJ, Towse LJ, Barnes PJ (1996) Prolonged effect of tiotropium bromide on methacholine-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 154:876–880

    PubMed  Google Scholar 

  162. Ahrens RC, Teresi ME, Han S-H, Donne D, Vanden Burgt JA, Lux CR (2001) Asthma stability after oral prednisone – a clinical model for comparing inhaled corticosteroid potency. Am J Respir Crit Care Med 164:1138–1145

    PubMed  CAS  Google Scholar 

  163. Ahrens RC, Hendeles L, Teresi ME, Lux CR, Vanden Burgt J, Hart KA, Ekholm BP (2003) Relative potency of beclomethasone dipropionate (BDP) delivered by HFA-MDI, and fluticasone propionate (FP) delivered by Diskus. Eur Respir J 22(Suppl 45):P1576 (Abstract)

    Google Scholar 

  164. Kelly MM, Leigh R, Jayaram L, Goldsmith CH, Parameswaran K, Hargreave FE (2006) Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol 117:989–994

    Article  PubMed  CAS  Google Scholar 

  165. Chowdhury BA (2010) Regulatory uncertainties in bioequivalence: exhaled nitric oxide as a possible efficacy endpoint for inhaled corticosteroids. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery 2010. Davis Healthcare, River Grove, pp 317–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gur Jai Pal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Singh, G.J.P., Poochikian, G. (2011). Development and Approval of Inhaled Respiratory Drugs: A US Regulatory Science Perspective. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_21

Download citation

Publish with us

Policies and ethics