Skip to main content

In Vitro Performance Testing for Pulmonary Drug Delivery

  • Chapter
  • First Online:
Controlled Pulmonary Drug Delivery

Abstract

This chapter provides a detailed review of in vitro testing methods for inhalation products. Specifically, the current compendial methods for pulmonary drug delivery are presented, discussion of cascade impactor use and simplification, determination of aerosol electrostatics, static characterization of particles and powders, solubility screening, and a review of research leading to improved dissolution studies for these products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adi H, Traini D, Chan HK, Young PM (2008) The influence of drug morphology on the aerosolisation efficiency of dry powder inhaler formulations. J Pharm Sci 97:2780–2788

    Article  PubMed  CAS  Google Scholar 

  2. Adi S, Adi H, Tang P, Traini D, Chan HK, Young PM (2008) Micro-particle corrugation, adhesion and inhalation aerosol efficiency. Eur J Pharm Sci 35:12–18

    Article  PubMed  CAS  Google Scholar 

  3. Ansoborlo E, Guilmette RA, Hoover MD, Chazel V, Houpert P, Henge-Napoli MH (1998) Application of in vitro dissolution tests to different uranium compounds and comparison with in vivo data. Radiat Prot Dosim 79:33–37

    CAS  Google Scholar 

  4. Asada M, Takahashi H, Okamoto H, Tanino H, Danjo K (2004) Theophylline particle design using chitosan by the spray drying. Int J Pharm 270:167–174

    Article  PubMed  CAS  Google Scholar 

  5. Asking L, Olsson B (1997) Calibration at different flow rates of a multistage liquid impinger. Aerosol Sci Technol 27:39–49

    Article  CAS  Google Scholar 

  6. Azarmi S, Roa W, Lobenberg R (2007) Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm 328:12–21

    Article  PubMed  CAS  Google Scholar 

  7. Bailey AG (1993) Charging of solids and powders. J Electrostat 30:167–180

    Article  CAS  Google Scholar 

  8. Balachandran W, Machowski W, Gaura E, Hudson C (1997) Control of drug aerosol in human airways using electrostatic forces. J Electrostat 40–1:579–584

    Article  Google Scholar 

  9. Begat P, Morton DAV, Staniforth JN, Price R (2004) The cohesive-adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm Res 21:1591–1597

    Article  PubMed  CAS  Google Scholar 

  10. Bonam M, Christopher D, Cipolla D, Donovan B, Goodwin D, Holmes S, Lyapustina S, Mitchell J, Nichols S, Pettersson G, Quale C, Rao N, Singh D, Tougas T, Van Oort M, Walther B, Wyka B (2008) Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech 9(2):404–413

    Article  PubMed  CAS  Google Scholar 

  11. Byron PR, Peart J, Staniforth JN (1997) Aerosol electrostatics.1. Properties of fine powders before and after aerosolization by dry powder inhalers. Pharm Res 14:698–705

    Article  PubMed  CAS  Google Scholar 

  12. Chew NYK, Chan HK (2001) Use of solid corrugated particles to enhance powder aerosol performance. Pharm Res 18:1570–1577

    Article  PubMed  CAS  Google Scholar 

  13. Chew NYK, Tang P, Chan HK, Raper JA (2005) How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res 22:148–152

    Article  PubMed  CAS  Google Scholar 

  14. Chow KT, Zhu K, Tan RBH, Heng PWS (2008) Investigation of electrostatic behavior of a lactose carrier for dry powder inhalers. Pharm Res 25:2822–2834

    Article  PubMed  CAS  Google Scholar 

  15. Christopher D, Curry P, Doub B, Furnkranz K, Lavery M, Lin K, Lyapustina S, Mitchell J, Rogers B, Strickland H, Tougas T, Tsong Y, Wyka B (2003) Considerations for the development and practice of cascade impaction testing, including a mass balance failure investigation tree. J Aerosol Med 16:235–247

    Article  PubMed  Google Scholar 

  16. Clarke MJ, Peart J, Cagnani S, Byron PR (2002) Adhesion of powders for inhalation: an evaluation of drug detachment from surfaces following deposition from aerosol streams. Pharm Res 19:322–329

    Article  PubMed  CAS  Google Scholar 

  17. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  18. Cline D, Dalby R (2002) Predicting the quality of powders for inhalation from surface energy and area. Pharm Res 19:1274–1277

    Article  PubMed  CAS  Google Scholar 

  19. Columbano A, Buckton G, Wikeley P (2003) Characterisation of surface modified salbutamol sulphate-alkylpolyglycoside miciroparticles prepared by spray drying. Int J Pharm 253:61–70

    Article  PubMed  CAS  Google Scholar 

  20. Cook RO, Pannu RK, Kellaway IW (2005) Novel sustained release microspheres for pulmonary drug delivery. J Control Release 104:79–90

    Article  PubMed  CAS  Google Scholar 

  21. Copley M (2007) Assessing the impact of the NGI. Pharmaceutical Manufacturing and Packaging Sourcer, Autumn

    Google Scholar 

  22. Dalby RN, Phillips EM, Byron PR (1991) Determination of drug solubility in aerosol propellants. Pharm Res 8:1206–1209

    Article  PubMed  CAS  Google Scholar 

  23. Davies NM, Feddah MIR (2003) A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm 255:175–187

    Article  PubMed  CAS  Google Scholar 

  24. de Boer AH, Hagedoorn P, Gjaltema D, Lambregts D, Irngartinger M, Frijlink HW (2004) The mode of drug particle detachment from carrier crystals in an air classifier-based inhaler. Pharm Res 21:2167–2174

    Article  PubMed  Google Scholar 

  25. de Boer AH, Hagedoorn P, Gjaltema D, Lambregts D, Irngartinger M, Frijlink HW (2004) The rate of drug particle detachment from carrier crystals in an air classifier-based inhaler. Pharm Res 21:2158–2166

    Article  PubMed  Google Scholar 

  26. Dennis NA, Blauser HM, Kent JE (1982) Dissolution fractions and half-times of single source yellowcake in simulated lung fluids. Health Phys 42:469–477

    Article  PubMed  CAS  Google Scholar 

  27. Dolovich MB, Mitchell JP (2004) Canadian Standards Association standard CAN/CSA/Z264.1-02:2002: a new voluntary standard for spacers and holding chambers used with pressurized metered-dose inhalers. Can Respir J 11:489–495

    PubMed  Google Scholar 

  28. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  29. Glover W, Chan HK (2004) Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). J Aerosol Sci 35:755–764

    Article  CAS  Google Scholar 

  30. Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89

    PubMed  CAS  Google Scholar 

  31. Grey VA, Hickey AJ, Balmer P, Davies NM, Dunbar C, Foster TS, Olsson BL, Sakagami M, Shah VP, Smurthwaite MJ, Veranth JM, Zaidi K (2008) The Inhalation Ad Hoc Advisory Panel for the USP performance tests of inhalation dosage forms. Pharmacopeial Forum 34:1068–1074

    Google Scholar 

  32. Gupta A, Myrdal PB (2004) On-line high-performance liquid chromatography method for analyte quantitation from pressurized metered dose inhalers. J Chromatogr A 1033:101–106

    Article  PubMed  CAS  Google Scholar 

  33. Gupta A, Myrdal PB (2005) A comparison of two methods to determine the solubility of compounds in aerosol propellants. Int J Pharm 292:201–209

    Article  PubMed  CAS  Google Scholar 

  34. Hallworth GW, Westmoreland DG (1987) The twin impinger – a simple device for assessing the delivery of drugs from metered dose pressurized aerosol inhalers. J Pharm Pharmacol 39:966–972

    Article  PubMed  CAS  Google Scholar 

  35. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, McLean R, Langridge J, Papadopoulos D (2007) Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci 96:1282–1301

    Article  PubMed  CAS  Google Scholar 

  36. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, McLean R, Langridge J, Papadopoulos D (2007) Physical characterization of component particles included in dry powder inhalers. II. Dynamic characteristics. J Pharm Sci 96:1302–1319

    Article  PubMed  CAS  Google Scholar 

  37. Hoe S, Traini D, Chan HK, Young PM (2009) Measuring charge and mass distributions in dry powder inhalers using the electrical next generation impactor (eNGI). Eur J Pharm Sci 38:88–94

    Article  PubMed  CAS  Google Scholar 

  38. Hoe S, Young PM, Chan HK, Traini D (2009) Introduction of the electrical next generation impactor (eNGI) and investigation of its capabilities for the study of pressurized metered dose inhalers. Pharm Res 26:431–437

    Article  PubMed  CAS  Google Scholar 

  39. Hooton JC, Jones MD, Price R (2006) Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach. J Pharm Sci 95:1288–1297

    Article  PubMed  CAS  Google Scholar 

  40. Islam N, Stewart P, Larson I, Hartley P (2005) Surface roughness contribution to the adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force microscopy. J Pharm Sci 94:1500–1511

    Article  PubMed  CAS  Google Scholar 

  41. Jaspart S, Bertholet P, Piel G, Dogne JM, Delattre L, Evrard B (2007) Solid lipid microparticles as a sustained release system for pulmonary drug delivery. Eur J Pharm Biopharm 65:47–56

    Article  PubMed  CAS  Google Scholar 

  42. Jones MD, Harris H, Hooton JC, Shur J, King GS, Mathoulin CA, Nichol K, Smith TL, Dawson ML, Ferrie AR, Price R (2008) An investigation into the relationship between carrier-based dry powder inhalation performance and formulation cohesive-adhesive force balances. Eur J Pharm Biopharm 69:496–507

    Article  PubMed  CAS  Google Scholar 

  43. Jones MD, Hooton JC, Dawson ML, Ferrie AR, Price R (2008) An investigation into the dispersion mechanisms of ternary dry powder inhaler formulations by the quantification of interparticulate forces. Pharm Res 25:337–348

    Article  PubMed  CAS  Google Scholar 

  44. Kwok PCL, Glover W, Chan HK (2005) Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci 94:2789–2799

    Article  PubMed  CAS  Google Scholar 

  45. Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56:588–599

    Article  PubMed  CAS  Google Scholar 

  46. Learoyd TP, Burrows JL, French E, Seville PC (2008) Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur J Pharm Biopharm 68:224–234

    Article  PubMed  CAS  Google Scholar 

  47. Lundbäck H, Wiktorsson B (2006) High throughput inhaler testing I: Fine particle dose. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory Drug Delivery. Davis Healthcare International Publishing LLC, River Grove, Illinois, USA, pp 467–469

    Google Scholar 

  48. Marjamaki M, Keskinen J, Chen DR, Pui DYH (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31:249–261

    Article  CAS  Google Scholar 

  49. Marple VA, Liu BYH (1974) Characteristics of laminar-jet impactors. Environ Sci Technol 8:648–654

    Article  CAS  Google Scholar 

  50. Marple VA, Olson BA, Miller NC (1995) A low-loss cascade impactor with stage collection cups – calibration and pharmaceutical inhaler applications. Aerosol Sci Technol 22:124–134

    Article  CAS  Google Scholar 

  51. Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL (2003) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part II: archival calibration. J Aerosol Med 16:301–324

    Article  PubMed  Google Scholar 

  52. Marple VA, Olson BA, Santhanakrishnan K, Roberts DL, Mitchell JP, Hudson-Curtis BL (2004) Next generation pharmaceutical impactor: a new impactor for pharmaceutical inhaler testing. Part III. Extension of archival calibration to 15 L/min. J Aerosol Med 17:335–343

    Article  PubMed  Google Scholar 

  53. Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Holroyd MJ, Mitchell JP, Hochrainer D (2003) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: design. J Aerosol Med 16:283–299

    Article  PubMed  Google Scholar 

  54. McConville JT, Patel N, Ditchburn N, Tobyn MJ, Staniforth JN, Woodcock P (2000) Use of a novel modified TSI for the evaluation of controlled-release aerosol formulations. I. Drug Dev Ind Pharm 26:1191–1198

    Article  PubMed  CAS  Google Scholar 

  55. Mitchell J, Dalby R (2006) Characterization of Aerosol Performance. Chapter 5 in Pulmonary Drug Delivery – Basics, Applications and Opportunities for Small Molecules and Bio-Pharmaceuticals. Ed. K. Bechtold-Peters and H. Lüssen. Editio Cantor Verlag, Aulendorf, Germany, pp. 282–305

    Article  PubMed  Google Scholar 

  56. Mitchell JP, Dunbar C (2005) The interpretation of data from cascade impactors. J Aerosol Med 18:439–451

    Article  PubMed  Google Scholar 

  57. Mitchell JP, Nagel MW (2003) Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med 16:341–377

    Article  PubMed  CAS  Google Scholar 

  58. Mitchell JP, Nagel MW, Avvakoumova V, MacKay H, Ali R (2009) The abbreviated impactor measurement (AIM) concept: part 1-influence of particle bounce and re-entrainment-­evaluation with a “dry” pressurized metered dose inhaler (pMDI)-based formulation. AAPS PharmSciTech 10:243–251

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell JP, Nagel MW, Avvakoumova V, MacKay H, Ali R (2009) The abbreviated impactor measurement (AIM) concept: part ii-influence of evaporation of a volatile component-­evaluation with a “droplet-producing” pressurized metered dose inhaler (pMDI)-based formulation containing ethanol as co-solvent. AAPS PharmSciTech 10:252–257

    Article  PubMed  CAS  Google Scholar 

  60. Mitchell JP, Nagel MW, Copley M (2009) The abbreviated impactor measurement concept: a potentially faster and more precise way to assess quality of inhaled drug products. Inhalation 3:26–30

    Google Scholar 

  61. Mitchell JP, Nagel MW, Doyle CC, Ali RS, Avvakoumova VI, Christopher JD, Quiroz J, Strickland H, Tougas T, Lyapustina S (2010) Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated Andersen cascade impactors (ACIs). Part2: investigation of bias in extra-fine mass fraction with AIM-HRT impactor. AAPS PharmSciTech 11(3):1115–1118

    Article  PubMed  CAS  Google Scholar 

  62. Mitchell JP, Nagel MW, Doyle CC, Ali RS, Avvakoumova VI, Christopher JD, Quiroz J, Strickland H, Tougas T, Lyapustina S (2010) Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated Andersen cascade impactors (ACIs). Part 1: designed experiment. AAPS PharmSciTechnol 11(2):843–851

    Article  CAS  Google Scholar 

  63. Moss OR (1979) Simulants of lung interstitial fluid. Health Phys 36:447–448

    PubMed  CAS  Google Scholar 

  64. Murtomaa M, Mellin V, Harjunen P, Lankinen T, Laine E, Lehto VP (2004) Effect of particle morphology on the triboelectrification in dry powder inhalers. Int J Pharm 282:107–114

    Article  PubMed  CAS  Google Scholar 

  65. Nichols SC, Brown DR, Smurthwaite M (1998) New concept for the variable flow rate Andersen cascade impactor and calibration data. J Aerosol Med 11:S133–S138

    Article  PubMed  Google Scholar 

  66. O’Hara P, Hickey AJ (2000) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 17:955–961

    Article  PubMed  Google Scholar 

  67. Okada J, Matsuda Y, Fukumori Y (1969) Measurement of adhesive force of pharmaceutical powders by centrifugal method. I. Yakugaku Zasshi 89:1539–1544

    PubMed  CAS  Google Scholar 

  68. Okada J, Matsuda Y, Fukumori Y (1971) Measurement of adhesive force of pharmaceutical powders by centrifugal method. 2. Relation between surface condition of substrates and separation force-particle residue curves. Yakugaku Zasshi 91:1207.

    Google Scholar 

  69. Olson BA, Marple VA, Mitchell JP, Nagel MW (1998) Development and calibration of a low-flow version of the Marple-Miller impactor (MMI (TM)). Aerosol Sci Technol 29:307–314

    Article  CAS  Google Scholar 

  70. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19:3–36

    Article  CAS  Google Scholar 

  71. Peart J, Staniforth JN, Meakin BJ (1995) Electrostatic charge interactions in pharmaceutical dry powder aerosols. Electrostatics 1995(143):271–274

    Google Scholar 

  72. Pham S, Wiedmann TS (2001) Dissolution of aerosol particles of budesonide in Survanta (TM), a model lung surfactant. J Pharm Sci 90:98–104

    Article  PubMed  CAS  Google Scholar 

  73. Philip VA, Mehta RC, DeLuca PP, Mazumder MK (1997) E-SPART analysis of poly(D, L-lactide-co-glycolide) microspheres formulated for dry powder aerosols. Part Sci Technol 15:303–316

    Article  Google Scholar 

  74. Philip VA, Mehta RC, Mazumder MK, DeLuca PP (1997) Effect of surface treatment on the respirable fractions of PLGA microspheres formulated for dry powder inhalers. Int J Pharm 151:165–174

    Article  CAS  Google Scholar 

  75. Preuss M, Butt HJ (1998) Direct measurement of particle-bubble interactions in aqueous electrolyte: dependence on surfactant. Langmuir 14:3164–3174

    Article  CAS  Google Scholar 

  76. Pritchard JN (2001) The influence of lung deposition on clinical response. J Aerosol Med 14:S19–S26

    Article  PubMed  CAS  Google Scholar 

  77. Rader DJ, Marple VA (1985) Effect of ultra-Stokesian drag and particle interception on impaction characteristics. Aerosol Sci Technol 4:141–156

    Article  Google Scholar 

  78. Saini D, Biris AS, Srirama PK, Mazumder MK (2007) Particle size and charge distribution analysis of pharmaceutical aerosols generated by inhalers. Pharm Dev Technol 12:35–41

    Article  PubMed  CAS  Google Scholar 

  79. Sdraulig S, Franich R, Tinker RA, Solomon S, O’Brien R, Johnston PN (2008) In vitro dissolution studies of uranium bearing material in simulated lung fluid. J Environ Radioact 99:527–538

    Article  PubMed  CAS  Google Scholar 

  80. Siewert M, Dressman J, Brown CK, Shah VP (2003) FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech 4:E7

    Article  PubMed  Google Scholar 

  81. Son Y-J, Horng M, Copley M, McConville JT (2010) Optimization of an in vitro dissolution test method for inhalation formulations. Dissolution Technologies, 17(2), May 6–13

    Google Scholar 

  82. Son Y-J, McConville JT (2009) Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm 382(1–2):15–22

    Article  PubMed  CAS  Google Scholar 

  83. Staniforth JN, Rees JE, Lai FK, Hersey JA (1981) Determination of interparticulate forces in ordered powder mixes. J Pharm Pharmacol 33:485–490

    Article  PubMed  CAS  Google Scholar 

  84. Stobbs B, McAulay E, Bogard H, Monsallier E (2009) Evaluation of the fast screening impactor for determining fine particle fraction of dry powder inhalers. Drug Delivery to the Lung 20, Edinburgh 158–161

    Google Scholar 

  85. Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA (2009) Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 26:1847–1855

    Article  PubMed  CAS  Google Scholar 

  86. Tang P, Chan HK, Raper JA (2009) Validation of computation method to predict aerodynamic diameter of particles with rough surface. Powder Technol 192:74–84

    Article  CAS  Google Scholar 

  87. Tang P, Chew NYK, Chan HK, Raper JA (2003) Limitation of determination of surface fractal dimension using N-2 adsorption isotherms and modified Frenkel-Halsey-Hill theory. Langmuir 19:2632–2638

    Article  CAS  Google Scholar 

  88. Taylor MK, Hickey AJ, VanOort M (2006) Manufacture, characterization, and pharmacodynamic evaluation of engineered ipratropium bromide particles. Pharm Dev Technol 11:321–336

    Article  PubMed  CAS  Google Scholar 

  89. Telko MJ, Kujanpaa J, Hickey AJ (2007) Investigation of triboelectric charging in dry powder inhalers using electrical low pressure impactor (ELPI™). Int J Pharm 336:352–360

    Article  PubMed  CAS  Google Scholar 

  90. Thielmann F, Burnett DJ, Heng JYY (2007) Determination of the surface energy distributions of different processed lactose. Drug Dev Ind Pharm 33:1240–1253

    Article  PubMed  CAS  Google Scholar 

  91. Tougas TP, Christopher D, Mitchell JP, Strickland H, Wyka B, Van Oort M, Lyapustina S (2009) Improved quality control metrics for cascade impaction measurements of orally inhaled drug products (OIPs). AAPS PharmSciTech 10:1276–1285

    Article  PubMed  CAS  Google Scholar 

  92. Traini D, Young PM (2006) A novel apparatus for the determination of solubility in pressurized metered dose inhalers. Drug Dev Ind Pharm 32:1159–1163

    Article  PubMed  CAS  Google Scholar 

  93. Tsukada M, Irie R, Yonemochi Y, Noda R, Kamiya H, Watanabe W, Kauppinen EI (2004) Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy. Powder Technol 141:262–269

    Article  CAS  Google Scholar 

  94. USP 32- NF27, R., MD (2009) US Pharmacopeial Convention, Inc.

    Google Scholar 

  95. Van Oort M, Roberts W (1996) Variable flow-variable stage-variable volume strategy for cascade impaction testing of inhalation aerosols. Respiratory Drug Delivery 1:418–420

    Google Scholar 

  96. Wiedmann TS, Bhatia R, Wattenberg LW (2000) Drug solubilization in lung surfactant. J Control Release 65:43–47

    Article  PubMed  CAS  Google Scholar 

  97. Williams RO, Rogers TL, Liu J (1999) Study of solubility of steroids in hydrofluoroalkane propellants. Drug Dev Ind Pharm 25:1227–1234

    Article  PubMed  CAS  Google Scholar 

  98. Wyka B, Tougas T, Mitchell J, Strickland H, Christopher D, Lyapustina S (2008) Comparison of two approaches for treating cascade impaction mass balance measurements. J Aerosol Med 21:155–156

    Google Scholar 

  99. Young PM, Price R, Lewis D, Edge S, Traini D (2003) Under pressure: predicting pressurized metered dose inhaler interactions using the atomic force microscope. J Colloid Interface Sci 262:298–302

    Article  PubMed  CAS  Google Scholar 

  100. Young PM, Price R, Tobyn MJ, Buttrum M, Dey F (2003) Investigation into the effect of humidity on drug-drug interactions using the atomic force microscope. J Pharm Sci 92:815–822

    Article  PubMed  CAS  Google Scholar 

  101. Young PM, Sung A, Traini D, Kwok P, Chiou H, Chan HK (2007) Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhaler carrier based systems. Pharm Res 24:963–970

    Article  PubMed  CAS  Google Scholar 

  102. Young PM, Tobyn MJ, Price R, Buttrum M, Dey F (2006) The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation. J Pharm Sci 95:1800–1809

    Article  PubMed  CAS  Google Scholar 

  103. Zeng XM, Martin G, Marriot C (2001) Particulate interactions in dry powder formulations for inhalation. Taylor and Francis, New York

    Book  Google Scholar 

  104. Zhu KW, Ng WK, Shen SC, Tan RBH, Heng PWS (2008) Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs. Pharm Res 25:2488–2496

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. McConville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Son, YJ., Mitchell, J.P., McConville, J.T. (2011). In Vitro Performance Testing for Pulmonary Drug Delivery. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_17

Download citation

Publish with us

Policies and ethics