Skip to main content

Preparation of High-Purity Glasses and Advanced Ceramics Via EPD of Nanopowders

  • Chapter
  • First Online:
Electrophoretic Deposition of Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

For shaping of bulk ceramic components and coatings electrophoretic deposition (EPD) is an interesting process especially for nanopowers, where high deposition rates can be reached. As for industrial applications aqueous systems are of main interest, problems with decomposition of water have to be solved. These problems with gas formation at the electrodes can be solved by using a oxidizable electrode or electrolyte, a membrane cell, or utilizing non-linear effects with pulsed AC currents. For nanosized particles EPD seems to be one of the most favorable processes because the deposition rate is independent of particle size in contrast to slip casting. Thus homogenous compacts with the comparatively highest relative green densities can be achieved with nanopowders or mixtures of coarser particles and nanopowders. In this case very high green densities up to 80% could be achieved reducing the linear shrinkage of the compact. This is of great importance for near net-shaping. Furthermore, the EPD process offers the possibility of a large variety of modifications like electrophoretic impregnation (EPI), where particles are deposited inside a porous structure. Thus all kinds of gradient materials and fiber composites can be prepared. The combination of EPD with electrodeposition or in-situ electrochemical reactions offers further possibilities, which have to be investigated for potential applications. Examples are given for the preparation of transparent silica glass, alumina and zirconia optoceramics and, finally, the perspectives of EPD coatings with self-adjusted thickness are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gani, M.S.J.: Electrophoretic deposition—a review. Ind. Ceram. 14(4), 163–174 (1994)

    Google Scholar 

  2. Nicholson, P.S., Sarkar, P.: The Electrophoretic Deposition of Ceramics, pp. 469–479. Am. Ceram. Soc., Westerville (1994)

    Google Scholar 

  3. Wittwer, H., Krüger, H.G.: Möglichkeiten und Grenzen der Elektrophorese, cfi/Ber. DKG 72(9), 556–560 (1995)

    CAS  Google Scholar 

  4. Boccaccini, A.R., Zhitomirsky, I.: Application of electrophoretic and electrolytic deposition techniques in ceramic processing. Solid State Mater. Sci. 6, 251–260 (2002)

    CAS  Google Scholar 

  5. Moritz, K., Tabellion, J., Clasen, R.: Elektrophoretische Abscheidung keramischer Feinst- und Nanopulver—Anwendungen als Formgebungsverfahren und Infiltrationsmethode, Fortschrittsber. Dtsch. Keram. Ges. 17(1), 48–55 (2002)

    CAS  Google Scholar 

  6. Corni, I., Ryan, M.P., Boccaccini, A.R.: Electrophoretic deposition: from traditional ceramics to nanotechnology, J. Euro. Ceram. Soc. 28, 1353–1367 (2008)

    CAS  Google Scholar 

  7. Moreno, R., Ferrari, B.: Advanced ceramics via EPD of Aqueous Slurries. Am. Ceram. Soc. Bull. Jan 2000, 44–48 (2000)

    Google Scholar 

  8. Boccaccini, A.R., Biest, O.v.d., Clasen, R.: Electrophoretic Deposition: Fundamentals and Applications II, p. 272. Trans Tech Publications Ltd., Ütikon (2006)

    Google Scholar 

  9. Neirinck, B., Fransaer, J., Biest, O.v.d., Vleugels, J.: Aqueous electrophoretic deposition in asymmetric AC electric fields (AC-EPD). Electrochem. Commun. 11(1), 57–60 (2009)

    CAS  Google Scholar 

  10. Clasen, R., Tabellion, J.: Electric-field-assisted processing of ceramics. Part I: perspectives and applications, cfi/Ber. DKG 80(10), E40–E45 (2003)

    CAS  Google Scholar 

  11. Oetzel, C., Clasen, R., Tabellion, J.: Electric-field assisted processing of ceramics. Part II: electrophoretic impregnation and use for manufacturing of glass and ceramic functionally graded materials, cfi/Ber. DKG 81(4), E35–E41 (2004)

    CAS  Google Scholar 

  12. Boccaccini, A.R., Roether, J.A., Thomas, B.J.C., Shaffer, M.S., Chavez, E., Stoll, E., Minay, E.J.: The electrophoretic deposition of inorganic nanoscaled materials—a review. J. Ceram. Soc. Japan 114(1), 1–14 (2006)

    CAS  Google Scholar 

  13. Conslik, A.T.: The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Electrophoresis 26, 1896–1912 (2005)

    Google Scholar 

  14. Tabellion, J.: Manufacturing of ceramics and glasses by aqueous electrophoretic deposition. Interceram 55(5), 338–342 (2006)

    CAS  Google Scholar 

  15. Fendler, J.H.: Nanoparticles and nanostructured films, p. 468. Wiley, Weinheim (1998)

    Google Scholar 

  16. Clasen, R., Tabellion, J.: Electrophoretic deposition from aqueous suspensions—technical applications. In: Boccaccini, A.R., Biest, O.v.d., Talbot, J.B. (eds.) Electrophoretic Deposition: Fundamentals and Applications, pp. 138–145. The Electrochemical Society, Inc., Pennigton (2002)

    Google Scholar 

  17. Braun, A., Wolff, M., Oetzel, C., Tabellion, J., Falk, G., Clasen, R.: Alumina ceramics by means of electrophoretic deposition of submicron powders. Ceram. Eng. Sci. Proc. 25(4), 591–596 (2004)

    CAS  Google Scholar 

  18. Braun, A.: Transparent Polycrystalline alumina ceramic by means of electrophoretic deposition for optical applications, Dissertation, p. 170. Universität des Saarlandes, Saarbrücken (2005)

    Google Scholar 

  19. Braun, A., Falk, G., Clasen, R.: Transparent polycrystalline alumina ceramic with sub-micrometre microstructure by means of electrophoretic deposition. Mat.-wiss. u. Werkstofftech. 37(4), 293–297 (2006)

    CAS  Google Scholar 

  20. Nichols, S.C., Loewenberg, M., Davis, R.H.: Electrophoretic particle aggregation. J. Colloid Interface Sci. 176, 342–351 (1995)

    CAS  Google Scholar 

  21. Solomentsev, Y., Guelcher, S.A., Bevan, M., Anderson, J.L.: Aggregation dynamics for two particles during electrophoretic deposition under steady fields. Langmuir 16, 9208–9216 (2000)

    CAS  Google Scholar 

  22. Pérez, A.T., Saville, D., Soria, C.: Modeling the electrophoretic deposition of colloidal particles. Europhys. Lett. 55(3), 425–431 (2001)

    Google Scholar 

  23. Greil, P., Cordelair, J., Bezold, A.: Discrete element simulation of ceramic powder processing. Z. Metallkd. 92, 682–689 (2001)

    CAS  Google Scholar 

  24. Nadal, F., Argoul, F., Hanusse, P., Pouligny, P., Ajdari, A.: Electrically induced interactions between colloidal particels in the vicinity of a conducting plane. Phys. Rev. E 65(067409), 1–7 (2002)

    Google Scholar 

  25. Solomentsev, Y., Böhmer, M., Anderson, J.L.: Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068 (1997)

    CAS  Google Scholar 

  26. Sarkar, P., De, D., Yamashita, K., Nicholson, P.S., Umegaki, T.: Mimicking nanometer atomic processes on a micrometer scale via electrophoretic deposition. J. Am. Ceram. Soc. 83(6), 1399–1401 (2000)

    CAS  Google Scholar 

  27. Giersig, M., Mulvaney, P.: Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993)

    CAS  Google Scholar 

  28. Roth, J.-E.: Grenzflächeneffekte bei der Fest/Flüssig-Trennung. Chem. -Ing. Tech. 63(2), 104–115 (1991)

    CAS  Google Scholar 

  29. Boccaccini, A.R., Biest, O.v.d., Talbot, J.B.: Electrophoretic Deposition: Fundamentals and Applications, p. 307. The Electrochemical Society. Inc., Pennigton (2002)

    Google Scholar 

  30. Rabinovich, E.M.: Review: preparation of glass by sintering. J. Mater. Sci. 20, 4259–4297 (1985)

    CAS  Google Scholar 

  31. MacChesney, J.B., DiGiovanni, D.: Materials development of optical fiber. J. Am. Ceram. Soc. 73(12), 3537–3555 (1990)

    CAS  Google Scholar 

  32. Sakka, S.: Gel method for making glass. In: Tomozawa, M., Doremus, R.H. (eds.) Treatise on Materials Science and Technology, pp. 129–167. Academic Press, New York (1982)

    Google Scholar 

  33. Yan, M.F.: Optical fiber processing: science and technology. Am. Ceram. Soc. Bull. 72(5), 107–119 (1993)

    CAS  Google Scholar 

  34. Clasen, R.: Preparation and sintering of high-density green bodies to high purity silica glasses. J. Non-Cryst. Solids 89, 335–344 (1987)

    CAS  Google Scholar 

  35. Clasen, R., Zeiner, J., Oetzel, C.: Shaping of nanosized powder by electrophoretic deposition—optimisation of suspension and green body properties by dispersing methods, cfi/Ber. DKG 84(13), 18–22 (2007)

    Google Scholar 

  36. Magnucki, K., Stasiewicz, P.: Elastic buckling of a porous beam. J. Theor. Appl. Mech 42(4), 859–868 (2004)

    Google Scholar 

  37. Kastler, A.: Untersuchungsmethoden zur in-situ Charakterisierung der elektrophoretischen Abscheidung, Diplomarbeit, p. 73. Universität des Saarlandes, Saarbrücken (2004)

    Google Scholar 

  38. Bohren, C.F., Huffmann, D.R.: Absorption and Scattering of Light by Small Particles, p. 530. Wiley, New York (1983)

    Google Scholar 

  39. Schmidt, E.W.: Elephant-Experiment oder Zukunft. Ziegelindustrie Int. 217–220 (1978)

    Google Scholar 

  40. Chronberg, M.S., Händle, F.: Processes and equipment for the production of materials by electrophoresis ELEPHANT. Interceram 27(1), 33–34 (1978)

    Google Scholar 

  41. Mihailescu, M., Emandi, M., Vancea, V., Marcu, M.: Electrophoretic behavior of ceramic sanitaryware slips. Interceram 40(3), 165–170 (1991)

    CAS  Google Scholar 

  42. Hector, I., Clasen, R.: Electrophoretic deposition of compacts from clay suspensions. Ceram. Eng. Sci. Proc. 18(2), 173–186 (1997)

    CAS  Google Scholar 

  43. Engelhardt, T.: Physikalische und chemische Eigenschaften wässriger Emailschlicker für die Elektrotauchemaillierung, PhD-Thesis. RWTH, Inst. f. Gesteinshüttenkunde, Aachen (1988)

    Google Scholar 

  44. Warnke, H., Kaup, F., Bersch, B., Mertinkat, W., Tenhaven, U.: Method for directly enameling steel parts using a single enamel coating, Patent, US 4707385

    Google Scholar 

  45. Warnke, H.: Die Elektrotauchemaillierung (ETE), p. 218. Eigenverlag Autor, Marienfelde (2001)

    Google Scholar 

  46. Sakurada, O., Suzuki, K., Miura, T., Hashiba, M.: Bubble-free electrophoretic deposition of aqueous zirconia suspensions with hydroquinone. J. Mater. Sci. 39, 1845–1847 (2004)

    CAS  Google Scholar 

  47. Lebrette, S., Pagnoux, C., Abélard, P.: Fabrication of titania dense layers by electrophoretic deposition in aqueous media, J. Eur. Ceram. Soc. 26, 2727–2734 (2006)

    CAS  Google Scholar 

  48. Clasen, R.: Forming of compacts of submicron silica particles by electrophoretic deposition. In: Hausner, H., Messing, G.L., Hirano, S. (eds.), 2nd Int. Conf. on Powder Processing Science Berchtesgaden, 633–640.12.–14. 10. Deutsche Keramische Gesellschaft, Köln (1988)

    Google Scholar 

  49. Bonnas, S., Tabellion, J., Ritzhaupt-Kleissl, H.-J., Haußelt, J.: Systematic Interactions of Sedimentation and Electrical Field in Electrophoretic Deposition. In: Menz, W., Dimov, S., Fillon, B., 4M 2006—Second International Conference on Multi-Material Micro Manufacture Grenoble, France, Elsevier

    Google Scholar 

  50. Tabellion, J., Clasen, R.: Advanced ceramic or glass components and composites by electrophoretic deposition/impregnation using nanosized particles. In: Lin, H.-T., Singh, M. (eds.) 26th Annual Conference on Composites, Advanced Ceramics, Materials and Structures Cocoa Beach, vol. 23, pp. 617–627. The American Ceramic Society, Florida (2002)

    Google Scholar 

  51. Tabellion, J., Clasen, R., Jungblut, E.: Near-shape manufacturing of ceramics and glasses by electrophoretic deposition using nanosized powders. Ceram. Eng. Sci. Proc. 24(3), 46 (2003)

    Google Scholar 

  52. Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22(7), 869–871 (1951)

    CAS  Google Scholar 

  53. Klass, D.L., Martinek, T.W.: Electroviscous fluids. I. Rheological properties. J. Appl. Phys. 38(1), 67–74 (1967)

    CAS  Google Scholar 

  54. Klass, D.L., Martinek, T.W.: Electroviscous fluids. II. Electrical properties. J. Appl. Phys. 38(1), 75–80 (1967)

    CAS  Google Scholar 

  55. Bowen, C.P., Shrout, T.R., Newnham, R.E., Randall, C.A.: Tunable electric field processing of composite materials. J. Intell. Mater. Syst. Struct. 6, 159–168 (1995)

    CAS  Google Scholar 

  56. Bowen, C.P., Bhalla, A.S., Newnham, R.E., Randall, C.A.: An investigation of the assembly conditions of dielectric particles in uncured thermoset polymers. J. Mater. Res. 9(3), 781–788 (1994)

    CAS  Google Scholar 

  57. Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J. Am. Ceram. Soc. 91(10), 3154–3159 (2008)

    CAS  Google Scholar 

  58. Yue, C.-F.J., Kumar, D., Singh, R.K.: Fabrication of Ag-sheathed Bi-Sr-Ca-Cu-O thik films by a novel a.c.-electric field assisted electrophoretic deposition method. Physica C 314, 291–298 (1999)

    CAS  Google Scholar 

  59. Stotz, S.: Field dependence of the electrophoretic mobility of particles suspended in low-conductivity liquids. J. Colloid Interface Sci. 65(1), 118–131 (1978)

    CAS  Google Scholar 

  60. Kortüm, G.: Lehrbuch der Elektrochemie, p. 564. Verlag Chemie GmbH, Weinheim (1957)

    Google Scholar 

  61. Moritz, K., Moritz, T.: Electrophoretically deposited porous ceramics and their characterization by X-ray computer tomography. Key. Eng. Mater. 412, 255–2670 (2009)

    CAS  Google Scholar 

  62. Santillán, M.J., Membrives, F., Quaranta, N., Boccaccini, A.R.: Characterization of TiO2 nanoparticle suspensions for electrophoretic deposition, J. Nanopart. Res. 10, 787–793 (2008)

    Google Scholar 

  63. Tabellion, J., Oetzel, C., Clasen, R.: Densification of porous ceramics and glasses by electrophoretic impregnation. Electrochem. Soc. Proc. 2002–21, 31–38 (2002)

    Google Scholar 

  64. Clasen, R., Smeets, K., Tabellion, J.: Incorporation of functional secondarys phases by electrophoretic impregnation. Electrochem. Soc. Proc. 2002–21, 279–286 (2002)

    Google Scholar 

  65. Tabellion, J., Zeiner, J., Clasen, R.: Manufacturing of pure and doped silica and multicomponent glasses from SiO2 nanoparticles by reactive electrophoretic deposition, J. Mater. Sci. 41, 8173–8180 (2006)

    CAS  Google Scholar 

  66. Smeets, K.: Pulvertechnologische Herstellung und Charakterisierung von Grünkörpern und Gläsern mit nanoskaligen Zweitphasen, Dissertation, p. 161. Universität des Saarlandes, Saarbrücken (2004)

    Google Scholar 

  67. Clasen, R.: Preparation of coloured silica glasses made by sintering of particulate gels. Glastech. Ber. 66(11), 299–304 (1993)

    CAS  Google Scholar 

  68. Zeiner, J.: Untersuchungen zur Herstellung von Mikrostrukturen aus nanoskaligen Pulvern mittels elektrophoretischer Abscheidung, Dissertation, p. 156. Universität des Saarlandes, Saarbrücken (2007)

    Google Scholar 

  69. Moritz, K., Müller, E.: Electrophoretic infiltration of woven carbon fibre mats with SiC powder suspensions. Key Eng. Mater. 206–213, 193–196 (2002)

    Google Scholar 

  70. Dittrich, R.: Neuartige Technologieansätze zur Hrestellung von C/SiS-Verbundwerkstoffen, Dissertation, p. 147. TU Bergakademie Freiberg, Freiberg (2007)

    Google Scholar 

  71. Müller, B., Ferkel, H.: Properties of nanocrysatlline Ni/Al2O3 composites. Z. Metallkd. 90(11), 868–871 (1999)

    Google Scholar 

  72. Müller, B., Ferkel, H.: Al2O3-nanoparticle distribution in plated nickel composite films. Nanostruct. Mater. 10(8), 1285–1288 (1998)

    Google Scholar 

  73. Vidrich, G., Moll, O., Ferkel, H.: Verhalten von SiO2- und Al2O3-Nanopartikeln in wässrigen Elektrolyten bei der Koabscheidung. In: 9. Werkstofftechnisches Kolloquium Chemnitz (2006)

    Google Scholar 

  74. Müller, B.: Elektrolytische Koabscheidung partikelverstärkter Nanoverbundschichten und deren Eigenschaften, p. 108. VDI, Düsseldorf (1999)

    Google Scholar 

  75. Krüger, H.G., Knote, A., Schindler, U., Kern, H., Boccaccini, A.R.: Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods. J. Mater. Sci. 39, 839–844 (2004)

    Google Scholar 

  76. Castagnet, J.-F.: Herstellung und Charakterisierung von nanopartikelverstärkten elektrolytisch abgeschiedenen Nickelschichten, Dissertation, p. 136. Technische Universität Clausthal, Clausthal-Zellerfeld (2005)

    Google Scholar 

  77. Jung, D.: Herstellung gradierter Glas-Metallübergänge mittels elektrophoretischer Abscheidung zur Reduzierung thermsicher Spannnungen, Dissertation, p. 151. Universität des Saarlandes, Saarbrücken (2008)

    Google Scholar 

  78. Zeiner, J., Clasen, R.: Fabrication of colored silica glasses by incorporation of nano-sized colloids via reactive electrophoretic deposition (REPD). Key Eng. Mater. 314, 115–120 (2006)

    CAS  Google Scholar 

  79. Dislich, H.: Darstellung von Mehrkomponenetengläsern ohne Durchlaufen der Schmelzphase. Glastechn. Ber. 44(1), 1–8 (1971)

    CAS  Google Scholar 

  80. Dislich, H.: New routes to multicomponent oxide glasses. Angew. Chemie. 10(6), 363–370 (1971)

    CAS  Google Scholar 

  81. Dislich, H.: Glassy and crystalline systems from gels: chemical basis and technical application. J. Non-Cryst. Solids 57, 371–388 (1983)

    CAS  Google Scholar 

  82. Mukherjee, S.P.: Sol-gel process in glass science and technology. J. Non-Cryst. Solids 42, 477–488 (1980)

    CAS  Google Scholar 

  83. Mukherjee, S.P.: Homogenity of gels and gel-derived glasses. J. Non-Cryst. Solids 63, 35–43 (1984)

    CAS  Google Scholar 

  84. Villegas, M.A., Navarro, J.M.F.: Characterization and study of Na2O-B2O3-SiO2 glasses prepared by the sol-gel method. J. Mater. Sci. 23, 2142–2152 (1988)

    CAS  Google Scholar 

  85. Villegas, M.A., Navarro, J.M.F.: Characterization of B2O3-SiO2 glassses prepared via sol-gel. J. Mater. Sci. 23, 2464–2478 (1988)

    CAS  Google Scholar 

  86. Jabra, R., Phalippou, J., Zarzycki, J.: Synthesis of binary glass-forming oxide glasses by hot-pressing of gels. J. Non-Cryst. Solids 42, 489–498 (1980)

    CAS  Google Scholar 

  87. Blasig, R.: Herstellung von Borosilikatglasschichten auf Glasformkörpern über einen Sinterprozeß nanoskaliger Pulver, Dissertation. Universität des Saarlandes, Saarbrücken (1997)

    Google Scholar 

  88. Coble, R.L.: Transparent alumina and method of preparation, Patent, US 3 026 210

    Google Scholar 

  89. Coble, R.L., Song, H., Brook, R.J., Handwerker, C.A., Dynys, J.M.: Sintering and grain growth in alumina and magnesia. In: Kingerly, W.D. (ed.) Advances in Ceramics Structure and Properties of MgO and Al2O3, pp. 839–852. The American Ceramic Society, Inc., Columbus (1984)

    Google Scholar 

  90. Peelen, J.G.J.: Influence of MgO on the evolution of the microstructure of alumina. In: Kuczynski, G.C. (ed.) Sintering and Catalysis, pp. 443–453. Plenum Press, New York (1975)

    Google Scholar 

  91. Peelen, J.G.J.: Zusammenhang zwischen Mikrostruktur und optischen Eigenschaften von polykristallinem Aluminiumoxid. Sci. Ceram. 6, 1–13 (1973)

    Google Scholar 

  92. Peelen, J.G.J.: Transparent hot-pressed alumina. I: Hot pressing of alumina. Ceram. Int. 5(2), 70–75 (1979)

    CAS  Google Scholar 

  93. Peelen, J.G.J., Metselaar, R.: Light scatering by pores in polycrystalline materials: transmission properties of alumina. J. Appl. Phys. 45(1), 216–220 (1974)

    CAS  Google Scholar 

  94. Peelen, J.P.J.: Die Lichtdurchlässigkeit von gesintertem Aluminiumoxid. Philips Techn. Rdsch. 36(2), 53–58 (1976/1977)

    Google Scholar 

  95. Apetz, R., Bruggen, M.P.B.v.: Transparent alumina: a light scattering model. J. Am. Ceram. Soc. 86(3), 480–486 (2003)

    CAS  Google Scholar 

  96. Bruggen, M.v., Apetz, R., Kop, T., Krell, A., Hutzler, T.: Transparent Polycristalline Aluminum Oxide, Patent, WO 2004/007398 A1

    Google Scholar 

  97. Krell, A., Blank, P., Ma, H.W., Hutzler, T., Bruggen, M.P.B.v., Apetz, R.: Transparent sintered corundum with high hardness and strength. J. Am. Ceram. Soc. 86(1), 12–18 (2003)

    CAS  Google Scholar 

  98. Krell, A., Ma, H.W.: Sintering transparent and other sub-mm alumina: the right powder, cfi-Ceram. Forum. Int. 80(4), E41–E45 (2003)

    CAS  Google Scholar 

  99. Krell, A., Hutzler, T., Klimke, J.: Transparent ceramics for tructural applications: part I. Physics of light transmission and technological consequences, cfi/Ber. DKG 84(4), E41–E50 (2007)

    CAS  Google Scholar 

  100. Krell, A., Hutzler, T., Klimke, J.: Transparent ceramics for structural applications: part 2: fields of applications, cfi/Ber. DKG 84(6), E50–E56 (2007)

    CAS  Google Scholar 

  101. Krell, A., Hutzler, T., Klimke, J.: Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc. 29 207–221 (2009)

    CAS  Google Scholar 

  102. Braun, A., Falk, G., Clasen, R.: Transparent polycrystalline alumina ceramic with sub-micrometre microstructure by means of electrophoretic deposition, cfi/Ber. DKG 82(13), 161–165 (2005)

    Google Scholar 

  103. Dericioglu, A.F., Kagawa, Y.: Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4, J. Eur. Ceram. Soc. 23(6), 951–959 (2003)

    CAS  Google Scholar 

  104. Patterson, M.C.L., Caiazza, J.E., Roy, D.W.: Transparent spinel development. In: Arthurs, E.G. (ed.) Inorganic Optical Materials II vol. 4102, pp. 59–68 (2000)

    Google Scholar 

  105. Skandan, G., Hahn, H., Parker, J.C.: Nanostructured Y2O3: Synthesis and relation to microstructure and properties. Scripta Metall. Mater. 25, 2389–2393 (1991)

    CAS  Google Scholar 

  106. Saito, N., Matsuda, S., Ikegami, T.: Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder, J. Am. Ceram. Soc. 81(8), 2023–2028 (1998)

    CAS  Google Scholar 

  107. Ikegami, T., Li, J.-G., Mori, T., Moriyoshi, Y.: Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide, J. Am. Ceram. Soc. 85(7), 1725–1729 (2002)

    CAS  Google Scholar 

  108. Ikesue, A.: Polycrystalline Nd:YAG ceramics lasers. Opt. Mater. 19, 183–187 (2002)

    CAS  Google Scholar 

  109. Cheng, J., Agrawal, D., Zhang, Y., Roy, R.: Microwave reactive sintering to fully transparent aluminium oxynidride (ALON) ceramics, J. Mater. Sci. Lett. 20, 77–79 (2001)

    CAS  Google Scholar 

  110. Snow, G.S.: Fabrication of Transparent PLZT Ceramics by Atmosphere Sintering, J. Am. Ceram. Soc. 56(2), 91–96 (1973)

    CAS  Google Scholar 

  111. Wolff, M.: Untersuchungen zur Herstellung von transparentem Zirkonoxid, Dissertation, p. 164. Universität des Saarlandes, Saarbrücken (2005)

    Google Scholar 

  112. Wolff, M., Clasen, R.: Fabrication of transparent polycrystalline zirconia ceramics, cfi/Ber. DKG 82(9), E49 (2005)

    CAS  Google Scholar 

  113. Wolff, M., Falk, G., Clasen, R.: Sintering behavior of dense nanocrystalline zirconia ceramics: a comparative investigation, Ceram. Eng. Sci. Proc. 25(4), 19–24 (2004)

    CAS  Google Scholar 

  114. Link, G., Wolff, M., Takayama, S., Thumm, M., Falk, G., Clasen, R.: The densification behavior of zirconia ceramics during millimeter-wave sintering, cfi/Ber. DKG 13, 312–316 (2005)

    Google Scholar 

  115. Braun, A., Clasen, R., Oetzel, C., Wolff, M.: Hochleistungskeramik aus Nanopulvermischungen für optische und dentale Anwendungen, Fortschrittsberichte der DKG, Beiheft cfi/Ber. DKG 20(1), 131–136 (2006)

    Google Scholar 

  116. Oetzel, C.: Herstellung vollkeramischer Zahnkronen aus Zirkonoxid und Zirkonoxid-Aluminiumoxid mit Hilfe der elektrophoretischen Abscheidung, Dissertation, p. 202. Universität des Saarlandes, Saarbrücken (2005)

    Google Scholar 

  117. Oetzel, C., Clasen, R.: Preparation of zirconia dental crowns via electrophoretic deposition, J. Mater. Sci. 41(24), 8130–8137 (2006)

    CAS  Google Scholar 

  118. Zeiner, J., Clasen, R.: Fabrication of microstructures by means of electrophoretic deposition (EPD). Key Eng. Mater. 314, 57–62 (2006)

    Google Scholar 

  119. Zeiner, J., Clasen, R.: Electrophoretic deposition as shaping technique—a CAM approach. Adv. Sci. Technol. 45, 714–719 (2006)

    CAS  Google Scholar 

  120. Zeiner, J., Nold, A., Clasen, R.: Electrophoretic deposition as shaping technique—a CAM approach. Adv. Sci. Technol. 45, 714–719 (2006)

    CAS  Google Scholar 

  121. Nold, A., Zeiner, J., Clasen, R.: Local electrophoretic deposition with coaxial electrodes. Key Eng. Mater. 412, 307–312 (2009)

    CAS  Google Scholar 

  122. Nold, A., Zeiner, J., Assion, T., Clasen, R.: Electrophoretic deposition as a rapid prototyping method. J. Euro. Ceram. Soc. 30(5), 1163–1170 (2010)

    CAS  Google Scholar 

  123. Nold, A., Zeiner, J., Clasen, R.: Fast deposition of surface structures by two-step EPD. Key Eng. Mater. 412, 3–8 (2009)

    CAS  Google Scholar 

  124. Krannich, R.: Elektrophoretisches Emailauftragen. Silikattechnik 18(7), 229–357 (1967)

    Google Scholar 

  125. Hoffmann, H.: Der elektrophoretische Emailauftrag. Sprechsaal 6, 221–224 (1969)

    Google Scholar 

  126. Vliet, W.E.v.d.: Verhalten farbiger Emails bei elektrophoretischer Abscheidung. Mitteilungen VDEfa 25(4), 49–52 (1977)

    Google Scholar 

  127. Salge, H.: Emailauftrag im elektrischen Feld. Mitteilungen VDEfa 25(3), 29–40 (1977)

    CAS  Google Scholar 

  128. Hoffmann, H.: Theory and practice of electrocoating of porcelain enamel. Ceram. Bull. 57(6), 605–608 (1978)

    CAS  Google Scholar 

  129. Yatsenko, E.A., Selivanov, V.N., Shchepeleeva, M.S.: Efficiency of depositing glass enamels by electrophoresis. Glass Ceram. 61(9–10), 352–354 (2004)

    CAS  Google Scholar 

  130. Nguyen, H.Q., Fürbeth, W., Schütze, M.: Nano-enamel: a new way to produce glass-like protective coatings for metals. Mater. Corros. 53, 772–782 (2002)

    CAS  Google Scholar 

  131. Gutierrez, C.P., Mosley, J.R., Wallace, T.C.: Electrophoretic deposition: a versatile coating method. J. Electrochem. Soc. 109(10), 923–927 (1962)

    CAS  Google Scholar 

  132. Koura, N., Tsukamoto, T., Shoji, H., Hotta, T.: Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn. J. Appl. Phys. 34(3), 1643–1647 (1995)

    CAS  Google Scholar 

  133. Zhitomirsky, I., Gal-Or, l.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci: Mater. Med. 8, 213–219 (1997)

    CAS  Google Scholar 

  134. May, H., Ordung, M., Ziegler, G.: Development of thin electrophoretically deposited hydroxyapatite layers on TiAl6V4 hip prosthesis. J. Mater. Sci. 41, 8138–8143 (2006)

    Google Scholar 

  135. Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C., Evans, J.H.: Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J. Sol-Gel Sci. Technol. 21, 39–48 (2001)

    CAS  Google Scholar 

  136. Wang, R., Hu, Y.X.: Patterning hydroxyapatite biocoating by electrophoretic deposition. J. Biomed. Res. A 67A(1), 270–275 (2003)

    CAS  Google Scholar 

  137. Yanagida, S., Nakajima, A., Kameshima, Y., Yoshida, N., Watanabe, T., Okada, K.: Preparation of crack-free rough titania coating on stainless steel mesh by electrophoretic deposition. Mater. Res. Bull. 40, 1335–1344 (2005)

    CAS  Google Scholar 

  138. Pfrengle, A., Both, H.v., Knitter, R., Haußelt, J.: Electrophoretic deposition and sintering of zirconia layers on microstructured steel substrates. J. Eur. Ceram. Soc. 26, 2633–2638 (2006)

    CAS  Google Scholar 

  139. Nishimori, H., Tatsumisago, M., Minami, T.: Preparation of thick silica films by the electrophoretic sol-gel deposition on a stainless steel sheet. J. Ceram. Soc. Jpn. 103(1), 78–80 (1995)

    CAS  Google Scholar 

  140. Damjanovic, T., Argirusis, C., Borchardt, G., Leipner, H., Herbig, R., Tomandl, G., Weiss, R.: Oxidation protection of C/C–SiC composites by an electrophoretically deposited mullite precursor. J. Eur. Ceram. Soc. 25, 577–587 (2005)

    CAS  Google Scholar 

  141. Zhitomirsky, I., Petric, A.: Electrophoretic deposition of electrolyte materials for solid oxide fuel cells. J. Mater. Sci. 39, 825–831 (2004)

    CAS  Google Scholar 

  142. Will, J., Hruschka, M.M., Gubler, L., Gauckler, L.J.: Electrophoretic deposition of zirconia on porous anodic substrates. J. Am. Ceram. Soc. 84(2), 328–332 (2001)

    CAS  Google Scholar 

  143. Basu, R.N., Randall, C.A., Mayo, M.J.: Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J. Am. Ceram. Soc. 84(1), 33–40 (2001)

    CAS  Google Scholar 

  144. Ishihara, T., Shimose, K., Kudo, T., Nishiguchi, H., Akbay, T., Takita, Y.: Preparation of yttria-stabilized zirconia thin films on strontium-doped LaMnO3 cathode substrates via electrophoretic deposition for solid oxide fuel cells. J. Am. Ceram. Soc. 83(8), 1921–1927 (2000)

    CAS  Google Scholar 

  145. Chen, F., Liu, M.: Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process. J. Euro. Ceram. Soc. 1–2, 127–134 (2001)

    Google Scholar 

  146. Zhitomirsky, I., Petric, A.: Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20(12), 2055–2061 (2000)

    CAS  Google Scholar 

  147. Hosseinbabaei, F., Raissidehkordi, B.: Electrophoretic deposition of MgO thick films from an acetone suspension. J. Euro. Ceram. Soc. 20, 2165–2168 (2000)

    CAS  Google Scholar 

  148. Ferrari, B., Moreno, R., Sakar, P., Nicholson, P.S.: Electrophoretic deposition of MgO from organic suspensions. J. Eur. Ceram. Soc. 20, 99–106 (2000)

    CAS  Google Scholar 

  149. Zhitomirsky, I., Petric, A.: Electrolytic and electrophoretic deposition of CeO2 films. Mater. Lett. 40, 263–268 (1999)

    CAS  Google Scholar 

  150. Williams, E.W., Jones, K., Griffiths, A.J., Roughley, D.J., Bell, J.M., Steven, J.H., Huson, M.J., Rhodes, M., Costich, T.: The electrophoresis of thin Film CdS/Cu2S solar cells. Solar Cells 1, 357–366 (1979/1980)

    Google Scholar 

  151. Matthews, D., Kay, A., Grätzel, M.: Electrophoretically deposited titanium dioxide thin films for photovoltaic cells. Aust. J. Chem. 47, 1869–1877 (1994)

    CAS  Google Scholar 

  152. Shane, M.J., Talbot, J.B., Schreiber, R.D., Ross, C.L., Sluzky, E., Hesse, K.R.: Electrophoretic deposition of phosphors. I. Conductivity and zeta potential measurements. J. Colloid Interface Sci. 165, 325–333 (1994)

    CAS  Google Scholar 

  153. Shane, M.J., Talbot, J.B., Kinney, B.G., Sluzky, E., Hesse, K.R.: Electrophoretic deposition of phosphors. II. Deposition experiments and analysis. J. Colloid Interface Sci. 165, 334–340 (1994)

    CAS  Google Scholar 

  154. Kaya, C., Kaya, F., Su, B., Thomas, B., Boccaccini, A.R.: Structural and functional thick ceramic coatings by electrophoretic deposition. Surf. Coat. Technol. 191, 303–310 (2005)

    CAS  Google Scholar 

  155. Zhang, J., Lee, B.I.: Electrophoretic deposition and characterization of micrometer-scale BaTiO3 based X7R dielectric thick films. J. Am. Ceram. Soc. 83(10), 2417–2422 (2000)

    CAS  Google Scholar 

  156. Wong, E.M., Searson, P.C.: ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl. Phys. Lett. 74(20), 2939–2941 (1999)

    CAS  Google Scholar 

  157. Windes, W.E., Zimmerman, J., Reimanis, I.: Electrophoretic deposition applied to thick metal-ceramic coatings. Surf. Coat. Technol. 157, 267–273 (2002)

    CAS  Google Scholar 

  158. Henker, A., Jahn, D., Pursche, G.: Zu Problemen des elektrophoretischen Abscheidensvon WC-Co Teilchen zum Zwecke der Herstellung verschleißmindernder Schichten, Wiss. Z. d. Techn. Hochsch. Karl-Marx-Stadt XXI(1), 21–32 (1979)

    Google Scholar 

  159. Lee, D.-G., Singh, R.K.: Synthesis of (111) oriented diamond thin films by electrophoretic deposition process. Appl. Phys. Lett. 70(12), 1542–1544 (1997)

    CAS  Google Scholar 

  160. Valdes, J.L., Mitchel, J.W., Mucha, J.A., Seibles, L., Huggins, H.: Selected-area nucleation and patterning of diamond thin films by electrophoretic seeding. J. Electrochem. Soc. 138(2), 635–636 (1991)

    CAS  Google Scholar 

  161. Affoune, A.M., Prasad, B.L.V., Sato, H., Enoki, T.: Electrophoretic deposition of nanosized diamond particles. Am. Chem. Soc. 17(2), 547–551 (2000)

    Google Scholar 

  162. Panitz, J.K.G., Dugger, M.T., Peebles, D.E., Tallant, D.R., Hills, C.R.: Electrophoretic deposition of pure MoS2 dry film lubricant coatings. J. Vac. Sci. Technol. A 11(4), 1441–1446 (1993)

    CAS  Google Scholar 

  163. Zhao, S.-Y., Lei, S.-B., Chen, S.-H., Ma, H.-Y., Wang, S.-Y.: Assembly of two-dimensional ordered monolayers of nanoparticles by electrophoretic deposition. Colloid. Polym. Sci. 278, 682–686 (2000)

    CAS  Google Scholar 

  164. Narisawa, T., Arato, T., Koganezawa, N., Shibata, M., Nonaka, Y.: Formation of alumina insulation films for a CRT heater by constant current electrophoretic deposition method. J. Ceram. Soc. Jpn. 103(1), 53–57 (1995)

    Google Scholar 

  165. Benjamin, M., Osborn, A.B.: The deposition of oxide coatings by cataphoresis. Trans. Faraday. Soc. 36, 287–295 (1940)

    CAS  Google Scholar 

  166. Thielmann, C.: Elektrotauch-Emaillierung—Vom Versuchsmodell zur Großserienanlage. JOT 1, 20–24 (1998)

    Google Scholar 

  167. Schaffert, R.M.: Electrophotography, p. 989. Focal Press Ltd., London (1975)

    Google Scholar 

  168. Comizzoli, R.B., Lozier, G.S., Ross, D.A.: Electrophotography—a review. Proc. IEEE 60(4), 348–369 (1972)

    CAS  Google Scholar 

  169. Hays, D.A., Ossman, K.R.: Electrophotographic copying and printing (xerography). In: The Optics Encyclopedia, pp. 587–607. Wiley, Weinheim (2004)

    Google Scholar 

  170. Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys., 65(1), 163–211 (1993)

    CAS  Google Scholar 

  171. Clasen, R.: Low-dose electroradiographic multilayer system with PbO binder layers. J. Photografic Sci. 28(6), 226–230 (1980)

    CAS  Google Scholar 

  172. Diamond, A.S., Weiss, D.S.: Handbook of Imaging Materials. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  173. Busselt, W., Junginger, H.-G., Peschmann, K.R., Stotz, S.: Verfahren zur Herstellung von elektrophotografischen Suspensionsentwicklern, Offenlegungsschrift, DE 2826127

    Google Scholar 

  174. Kaplan, S.H., Libman, P.C., Wainscott, W.E.: Process for making color television screens by electrophoretic deposition, Patent, US 4130472

    Google Scholar 

  175. Junginger, H.-G., Littmann, W., Loosdrengt, P.C.v.: Verfahren zur Herstellung eines Bildschirmes für Farbbildröhren auf elektrophotografischem Wege, Offenlegungsschrift, DE 3008419 A1

    Google Scholar 

  176. Junginger, H.-G., Littmann, W., Loosdrengt, P.C.v.: Verfahren zur Herstellung eines Bildschirmes für eine Fernsehbildwiedergaberöhre, Offenlegungsschrift, DE

    Google Scholar 

  177. Talbot, J.B., Sluzky, E., Kurinec, S.K.: Electrophoretic deposition of monochrome and color screens for information displays. J. Mater. Sci. 39, 771–778 (2004)

    CAS  Google Scholar 

  178. Zimmer, M.: Verfahren zur Herstellung dekorierter Keramik- und Glaserzeugnisse und keramische Farbzusammensetzungen zur Durchführung des Verfahrens, Patent, DE 44 13 168 C2

    Google Scholar 

  179. Weinberg, W., Auchter-Krummel, P., Zimmer, M.: Verfahren und Vorrichtung zum Aufbringen von Dekors und/oder Zeichen auf Glas-, Glaskeramik- und Keramikerzeugnisse, Patent, DE 19849500A1

    Google Scholar 

  180. Cawley, J.D., Heuer, A.H., Newman, W.S., Mathewson, B.B.: Computer-aided manufacturing of laminated engineering materials. Am. Ceram. Soc. Bull. 75(5), 75–79 (1996)

    CAS  Google Scholar 

  181. Cima, M.J., Yoo, J., Rynerson, M., Nammour, D., Giritlioglu, B., Grau, J., Sachs, E.M.: Structural ceramic components by 3D printing. In: Proceedings of the Symposium on “Solid Freeform Fabrication”, Austin, 479–488

    Google Scholar 

  182. Zhang, Y., He, X., Han, J., Du, S., Zhang, J.: Al2O3 ceramics preparation by LOM (laminated object manufacturing). Int. J. Adv. Manuf. Technol. 4, (2001)

    Google Scholar 

  183. Heinrich, J.G.: New developments in the solid freeform fabrication of ceramic components, cfi/Ber. DKG 76, 29–35 (1999)

    CAS  Google Scholar 

  184. Mott, M., Evans, J.R.G.: Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater. Sci. Eng. A 271, 344–352 (1999)

    Google Scholar 

  185. Slade, C.E., Evans, J.R.G.: Freeforming ceramics using a thermal jet printer. J. Mater. Sci. Lett. 17, 1669–1671 (1998)

    CAS  Google Scholar 

  186. Deitz, D.: Stereolithography automates prototyping. Mech. Eng. 112(2), 34–39 (1990)

    Google Scholar 

  187. Griffith, M.L., Halloran, J.W.: Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79(10), 2601–2608 (1996)

    CAS  Google Scholar 

  188. Rekow, E.D.: Dental CAD-CAM systems—what is the state of the art?. J. Am. Dent. Assoc. 122, 43–48 (1991)

    Google Scholar 

  189. Rekow, D.: Computer-aided design and manufacturing in dentistry: A review of the state of the art. J. Prosth. Dent. 58(4), 512–516 (1987)

    CAS  Google Scholar 

  190. Duret, F., Blouin, J.-L., Duret, V.: CAD-CAM in dentistry. J. Am. Dent. Assoc. 117, 715–720 (1988)

    CAS  PubMed  Google Scholar 

  191. Mörmann, W.H., Brandestini, M., Lutz, F., Barbakow, F.: Chairside computer-aided direct ceramic inlays. Quintessence Int. 20(5), 239–339 (1989)

    Google Scholar 

  192. Ogawa, T., Ioroi, T., Uchimoto, Y., Ogumi, Z., Takehara, Z.: A novel method for preparation of Ni/YSZ cermet by vapor-phase processes. In: Third Inter. Symp. on Solid Oxid Fuel Cells, Honolulu, Hawaii, 479–483

    Google Scholar 

  193. Sanghera, B., Naique, S., Papaharilaou, Y., Amis, A.: Preliminary study of rapid prototype medical models. Rapid Prototyping J. 7(5), 275–284 (2001)

    Google Scholar 

  194. Sumeel, J., Lewis, J., Doraiswamy, A., Deravi, L.F., Sewell, S.L., Gerdon, A.E., Wright, D.W., Narayan, R.J.: Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol. J. 1(9), 976–987 (2006)

    Google Scholar 

  195. Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 74B(2), 782–788 (2005)

    CAS  Google Scholar 

  196. Manjooran, N.J.: Development of an alpha silicon carbide based liquid toner for electro-photographic solid freeform fabrication, Master Thesis. Univeristy of Florida (2003)

    Google Scholar 

  197. Manjooran, N.J., Kumar, A., Sigmund, W. M.: Development of a liquid toner for electro-photographic solid freeform fabrication. J. Eur. Ceram. Soc. 26, 2459–2465 (2006)

    CAS  Google Scholar 

  198. Mahale, T.R.: Three dimensional electrophotographic printing through layered manufacturing: an exploration into personal fabrication, Master Thesis. North Carolina State University, Raleigh (2003)

    Google Scholar 

  199. Mahadevan, P.: Analysis of layer development and fusing for 3D laser printing pHD thesis, p. 87. North Carolina State University, Raleigh (2003)

    Google Scholar 

  200. Kumar, A.V., Dutta, A., Fay, J.E.: Electrophotographic printing of part and binder powders. Rapid Prototyp. J. 10(1), 7–13 (2004)

    Google Scholar 

  201. Both, H.v., Hausselt, J.: Ceramic microstructures by electrophoretic deposition of colloidal suspensions. In: Boccaccini, A.R., Biest, O.v.d., Talbot, J.B. (eds.) Electrophoretic Deposition: Fundamentals and Applications, pp. 78–85. The Electrochemical Society, Inc., Pennigton (2002)

    Google Scholar 

  202. Both, H.v.: Elektrophoretische Herstellung keramischer Mikrostrukturen. Keram. Z. 56(5), 298–303 (2004)

    CAS  Google Scholar 

  203. Laubersheimer, J., Ritzhaupt-Kleissl, H.-J., Haußelt, J., Emig, G.: Electrophoretic deposition of sol-gel ceramic microcomponents using UV-curable alkoxide precursors. J. Eur. Ceram. Soc. 18, 255–260 (1998)

    CAS  Google Scholar 

  204. Yoo, J.H., Gao, W.: Electrical properties of PZT micro tubes fabricated by electrophoretic deposition. In: Boccaccini, A.R., Biest, O.v.d., Talbot, J.B. (eds.) Electrophoretic Deposition: Fundamentals and Applications, pp. 146–150. The Electrochemical Society, Inc., Pennigton (2002)

    Google Scholar 

  205. Limmer, S.J., Seraji, S., Wu, Y., Chou, T.P., Nguyen, C., Cao, G.: Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv. Funct. Mater. 12(1), 59–64 (2002)

    CAS  Google Scholar 

  206. Wang, Y.C., Leu, I.C., Hon, M.H.: Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition. J. Cryst. Growth 237–239, 564–568 (2002)

    Google Scholar 

  207. Holgado, M., García-Santamaría, F., Blanco, A., Ibisate, M., Cintas, A., Míguez, H., Serna, C.J., Molpeceres, C., Requena, J., Mifsud, A., Meseguer, F., López, C.: Electrophoretic deposition to control artificial opal growth. Langmuir 15, 4701–4704 (1995)

    Google Scholar 

  208. Zhitomirsky, I.: Electrophoretic hydroxylapatite coatings and fibers. Mater. Lett. 42, 262–271 (2000)

    CAS  Google Scholar 

  209. Gao, B., Yue, G.Z., Qiu, Q., Cheng, Y., Shimoda, H., Fleming, L., Zhou, O.: Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv. Mater. 13(23), 1770–1773 (2001)

    CAS  Google Scholar 

  210. Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Minary, E.J., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006)

    CAS  Google Scholar 

  211. Thomas, B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K., Boccaccini, A.R.: Electrophoretic deposition of carbon nanotubes on metallic surfaces. Key. Eng. Mater. 314, 141–146 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Clasen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clasen, R. (2012). Preparation of High-Purity Glasses and Advanced Ceramics Via EPD of Nanopowders. In: Dickerson, J., Boccaccini, A. (eds) Electrophoretic Deposition of Nanomaterials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9730-2_6

Download citation

Publish with us

Policies and ethics