Nanoparticles Dispersion and the Effect of Related Parameters in the EPD Kinetics

  • Rodrigo Moreno
  • Begoña Ferrari
Part of the Nanostructure Science and Technology book series (NST)


In this chapter, the stabilization of nanoparticles in liquid media is studied on the basis of the colloid science foundations. The most common dispersing mechanisms, i.e. electrostatic and steric, are reviewed. After the stabilization of the particles, an additional step is the deposition process, whose kinetics depends on a number of parameters related to both the suspension and the applied conditions. This chapter reviews the quantitative models existing in the literature to explain and predict the deposit formation kinetics.


Zeta Potential Deposition Time Colloidal Dispersion Electrophoretic Deposition Steric Stabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Particle radius


Hamaker constant


London constant


Deposit concentration


Solid content of the suspension


Initial solid content of the suspension


Particle diameter


Electric field


Effective electric field


Efficiency factor or sticking parameter


Electric Current


Electric current transported by the cations


Electric current transported by the anions


Electric current transported by the particles


Initial current density


Current density


Kinetics parameter


Electrode distance


Deposited mass


Initial mass of powder in suspension




Deposition surface area


Conduction surface area


Deposition time


Volume of the suspension


Volume of the deposit

Greek Symbols


Debye length


Dielectric constants of the deposit


Dielectric constants of the suspension


Dielectric constant of the solvent


Dielectric constant of the particles


Vacuum dielectric constant


Volumetric fraction of the deposit


Volumetric fraction of the suspension


Initial volumetric fraction of the suspension


Solvent viscosity


Electrophoretic mobility


Electrophoresis rate


Resistivity of the suspension


Resistivity of the suspension at infinite time


Resistivity of the deposit


Resistivity associated to the cations


Resistivity associated to the anions


Resistivity associated to the particles


Initial resistivity of the suspension


Deposit thickness


Conductivity of the suspension


Conductivity of the liquid medium


Characteristic deposition time


Characteristic deposition time for initial conditions


The characteristic deposition time for final conditions


Potential drop and surface potential


Potential drop at the anode


Potential drop at the cathode


Zeta potential


  1. 1.
    Pileni, M.P.: Nanosized particles made in colloidal assemblies. Langmuir 13, 3266–3276 (1997)Google Scholar
  2. 2.
    Knauth, P., Schoonmann, J. (eds.): Nanostructured materials. Selected synthesis methods, properties and applications. Kluwer, New York (2004)Google Scholar
  3. 3.
    Taniguchi, N.: On the basic concept of nanotechnology. Proc. ICPE, Japan (1974)Google Scholar
  4. 4. Accessed Jan 2010Google Scholar
  5. 5.
    Caruso, F.: Nanoengineering of particle surfaces. Adv. Mater. 13, 11–22 (2001)Google Scholar
  6. 6.
    Zeng, H., Li, J., Liu, J.P., Huang, C.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle selfassembly. Nature 420, 395–398 (2002)PubMedGoogle Scholar
  7. 7.
    Caruso, F.: Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloidal particles. Wiley, Germany (2003)Google Scholar
  8. 8.
    Fahlman, B.D.: Materials chemistry. Springer, The Netherlands (2007)Google Scholar
  9. 9.
    Sergeev, G.B.: Nanochemistry. Mos. Gos. Univ., Moscow. (2003)Google Scholar
  10. 10.
    Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)Google Scholar
  11. 11.
    Sigmund, W.M., Bell, N.S., Bergström, L.: Novel powder-processing methods for advanced ceramics. J. Am. Ceram. Soc. 83, 1557–1574 (2000)Google Scholar
  12. 12.
    Finke, R.G.: Transition metal nanoclusters in metal nanoparticles: synthesis, characterization, and applications. Dekker, New York (2002)Google Scholar
  13. 13.
    Richerson, D.W.: Modern ceramic engineering—properties, processing and use in design, 2nd edn. Dekker, New York (1992)Google Scholar
  14. 14.
    Ashby, M., Shercliff, H., Cebon, D. Materials. Engineering, science, processing and design. Elsevier, Oxford (2007)Google Scholar
  15. 15.
    Jaschinski, W., Nagel, A.: Possibilities and limits in the shaping of ceramic powdes. Interceram 42, 135–139 (1993)Google Scholar
  16. 16.
    Onoda, G.Y., Hench, L.L. (eds.): Ceramic processing before firing. Wiley, New York (1978)Google Scholar
  17. 17.
    Reed, J.S.: Introduction to the principles of ceramic processing, 2nd edn. Wiley, New York (1995)Google Scholar
  18. 18.
    Buchkremer, H.P., Menzler, N.H.: Ceramic processing (Chap. 24). In: Groza, J.R., Shackelford, J.F., Lavernia, E.J., Powers, M.T. (eds.) Material processing handbook. CRC Press, Boca Raton (2007)Google Scholar
  19. 19.
    Wang, F.F.Y. (ed.): Treatise on materials science and technology, vol 9: ceramic fabrication processes. Academic Press, New York (1978)Google Scholar
  20. 20.
    Brinker, C.J., Clark, D.E., Ulrich, D.R. (eds.): Better ceramics through chemistry. Mat. Res. Soc. Proc., vol 32, North-Holland (1984)Google Scholar
  21. 21.
    Moreno, R.: Trends in slip forming of ceramics. Bol. Soc. Esp. Ceram. Vidr. 39, 601–608 (2000)Google Scholar
  22. 22.
    Tari, G.: Gelcasting ceramics: a review. Am. Ceram. Soc. Bull. 82, 43–47 (2003)Google Scholar
  23. 23.
    Wang, L.A., Aldinger, F.: Near-net shape forming of advanced ceramics. Adv. Eng. Mater. 3, 110–113 (2000)Google Scholar
  24. 24.
    Lewis, J.A.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341–2359 (2000)Google Scholar
  25. 25.
    Kingery, W.D. (ed.): Ceramic fabrication orocesses, pp. 5–51. MIT Press: Cambridge (1958)Google Scholar
  26. 26.
    Shanefield, D.J.: Organic additives and ceramic processing, 2nd edn. Kluwer, Norwell (1996)Google Scholar
  27. 27.
    Moreno, R.: The role of slip additives in tape casting technology. Part I: solvents and dispersants. Am. Ceram. Soc. Bull. 71, 1521–1531 (1992)Google Scholar
  28. 28.
    Moreno, R.: The role of slip additives in tape casting technology. Part II: binders and plasticizers. Am. Ceram. Soc. Bull. 71, 1647–1656 (1992)Google Scholar
  29. 29.
    Hench, L.L., Ulrich, D.R. (eds.): Ultrastructure processing of ceramics, glasses and composites. Wiley, New York (1984)Google Scholar
  30. 30.
    Aksay, I.A., Lange, F.F., Davis, B.I.: Uniformity of Al2O3/ZrO2 composites by colloidal filtration. J. Am. Ceram. Soc. 60, C190–C192 (1983)Google Scholar
  31. 31.
    Pashley, R.M., Karaman, M.E.: Applied colloid and surface chemistry. Wiley, West Sussex (2004)Google Scholar
  32. 32.
    Hiemenz, P.C.: Principles of colloid and surface chemistry, 3rd edn. Dekker, New York (1997)Google Scholar
  33. 33.
    Hunter, R.J.: Foundations of colloid science, vol. 1, Clarendon Press, Oxford (1987)Google Scholar
  34. 34.
    Israelachvili, J.N.: Intermolecular and surface forces. Academic Press, London (1985)Google Scholar
  35. 35.
    Shaw, D.J.: Introduction to colloid and surface chemistry, 4th edn. Butterworth-Heinemann, Oxford (1992)Google Scholar
  36. 36.
    Cosgrove, T. (ed.): Colloid science. Principles, methods and applications. Blackwell, Oxford (2005)Google Scholar
  37. 37.
    Holmberg, K. (ed.): Handbook of advanced surface and colloid chemistry. Wiley, West Sussex (2002)Google Scholar
  38. 38.
    Everett, D.H.: Basic principles of colloid science. The Royal Society of Chemistry, London (1988)Google Scholar
  39. 39.
    Pugh, R.J., Bergström, L. (eds.): Surface and colloid chemistry in advanced ceramics processing. Dekker, New York (1994)Google Scholar
  40. 40.
    Bergstrom, L.: Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 70, 125–169 (1997)Google Scholar
  41. 41.
    Parks, G.A., De Bruyn, P.L.: The zero point of charge of oxides. J. Phys. Chem. 66, 967–972 (1962)Google Scholar
  42. 42.
    Tadros, T.F. (ed.): Surfactants. Academic Press, London (1984)Google Scholar
  43. 43.
    Napper, D.H.: Steric stabilization. J. Colloid Interface Sci., 58, 390–407 (1977)Google Scholar
  44. 44.
    Napper, D.H.: Polymeric stabilization of colloidal dispersions. Academic Press, London (1983)Google Scholar
  45. 45.
    Ruda, H.E., Polanyi, J.C., Yang, S.Y.: Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Res. Lett. 1, 99–119 (2006)PubMedCentralGoogle Scholar
  46. 46.
    Corni, I., Ryan, M.P., Boccaccini, A.R.: Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)Google Scholar
  47. 47.
    Cao, G., Liu, D.: Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 136, 45–64 (2008)PubMedGoogle Scholar
  48. 48.
    Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)Google Scholar
  49. 49.
    Boccaccini, A.R., Cho, J., Subhani, T.: Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J. Eur. Ceram. Soc. 30, 1115–1129 (2010)Google Scholar
  50. 50.
    Boccaccini, A.R., Roether, J.A., Thomas, B.J.C., Shapper, M.S.P., Chavez, E., Stoll, E., Minay, E.J.: The electrophoretic deposition of inorganic nanoscaled materials. J. Ceram. Soc. Jpn. 114, 1–14 (2006)Google Scholar
  51. 51.
    Moreno, R., Ferrari, B.: Advanced ceramics via EPD of aqueous slurries. Am. Ceram. Soc. Bull. 79, 44–48 (2000)Google Scholar
  52. 52.
    Ferrari, B., González, S., Moreno, R., Baudín, C.: Multilayer coatings with improved reliability produced by aqueous electrophoretic deposition. J. Eur. Ceram. Soc. 26, 27–36 (2006)Google Scholar
  53. 53.
    Ji, C., Lan, W., Xiao, P.: Fabrication of yttria-stabilized zirconia coatings using electrophoretic deposition: packing mechanism during deposition. J. Am. Ceram. Soc. 91, 1102–1109 (2008)Google Scholar
  54. 54.
    Ferrari, B., Moreno, R.: EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)Google Scholar
  55. 55.
    Hamaker, H.C.: Formation of a deposit by electrophoresis. Trans. Faraday Soc. 36, 279–287 (1940)Google Scholar
  56. 56.
    Hirata, Y., Nishimoto, A., Ishisara, Y.: Forming of alumina powder by electrophoretic deposition. J. Ceram. Soc. Jpn. Int. Ed. 99, 105–109 (1991)Google Scholar
  57. 57.
    Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1897–2002 (1996)Google Scholar
  58. 58.
    Zhang, Z., Huang, Y., Jiang, Z.: Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media. J. Am. Ceram. Soc. 77, 1946–1949 (1994)Google Scholar
  59. 59.
    Patel, M.N., Williams, R.D., May, R.A.: Electrophoretic deposition of Au nanocrystals inside perpendicular mesochannels of TiO2. Chem. Mater. 20, 6029–6040 (2008)Google Scholar
  60. 60.
    Bao, Y., Nicholson, P.S.: Constant current electrophoretic infiltration deposition of fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 90, 1063–1070 (2007)Google Scholar
  61. 61.
    Wang, Y.C., Leu, I.C., Hon, M.H.: Size control of ZnO nano-fibril within template by electrophoretic deposition. Electrochem. Solid-State Lett. 7, D15–D18 (2004)Google Scholar
  62. 62.
    Haber, S., Gal-Or, L.: Deep electrophoretic penetration and deposition of ceramic particles inside porous substrates I: analytical model. J. Electrochem. Soc. 139, 1071–1077 (1992)Google Scholar
  63. 63.
    Haber, S., Liubovich, S., Gal-Or, L.: Deep electrophoretic penetration and deposition of ceramic particles inside porous substrates II: experimental model. J. Electrochem. Soc. 139, 1078–1081 (1992)Google Scholar
  64. 64.
    Will, J., Hruschka, M.K.M., Gubler, L., Gauckler, L.J.: Electrophoretic deposition of zirconia on porous anodic substrates. J. Am. Ceram. Soc. 84, 328–332 (2001)Google Scholar
  65. 65.
    Chen, C.Y., Chen, S.Y., Liu, D.M.: Electrophoretic deposition forming of porous Alumina membranes. Acta. Mater. 47, 2717–2726 (1999)Google Scholar
  66. 66.
    Bonnas, S., Ritzhaupt-Kleissl, H.J., Haußelt, J.: Fabrication of particle and composition gradients by systematic interaction of sedimentation and electrical field in electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1177–1185 (2010)Google Scholar
  67. 67.
    Biesheuvel, P.M., Verweij, H.: Theory of cast formation in electrophoretic deposition. J. Am. Ceram. Soc. 82, 1451–1455 (1999)Google Scholar
  68. 68.
    Gonzalez-Cuenca, M., Biesheuvel, P.M., Verweij, H.: Modeling constant voltage electrophoretic deposition from stirred suspension. Aiche. J. 46, 626–631 (2000)Google Scholar
  69. 69.
    Ma, J., Cheng, W.: Electrophoretic deposition of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 85, 1735–1737 (2002)Google Scholar
  70. 70.
    Stappers, L., Zhang, L., Van Der Biest, O., Fransaer, J.: The effect of electrolyte conductivity on electrophoretic deposition. J. Colloid Interface Sci. 328(2), 436–446 (2008)PubMedGoogle Scholar
  71. 71.
    Pignolet, C., Filiarte, C., Foissy, A.: Influence of surfactant counter-ions during electrophoretic particle deposition. Langmuir 24, 10181–10186 (2008)PubMedGoogle Scholar
  72. 72.
    Anné, G., Vanmeensel, K., Vleugels, J., Van Der Biest, O.: Influence of the suspension composition on the electric field and deposition rate during electrophoretic deposition. Colloids Surf.: Phys. Eng. Aspects 245, 35–39 (2004)Google Scholar
  73. 73.
    Van Der Biest, O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999)Google Scholar
  74. 74.
    Ciou, S.J., Funga, K.Z., Chiang, K.W.: Behaviors and mechanism of electrolyte electrophoresis during electrophoretic deposition. J. Power Sources 175, 33–39 (2008)Google Scholar
  75. 75.
    Ciou, S.J., Funga, K.Z., Chiang, K.W.: A comparison of the artificial neural network model and the theoretical model used for expressing the kinetics of electrophoretic deposition of YSZ on LSM. J. Power Sources 175, 338–344 (2008)Google Scholar
  76. 76.
    Anné, G., Neirinck, B., Vanmeensel, K., Van Der Biest, O., Vleugels, J.: Origin of the potential drop over the deposit during electrophoretic deposition. J. Am. Ceram. Soc. 89, 823–828 (2006)Google Scholar
  77. 77.
    Wang, Y.C., Leu, I.C., Hon, M.H.: Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings. J. Am. Ceram. Soc. 87, 84–88 (2004)Google Scholar
  78. 78.
    Vander Poorten, H.: Caracterisation de l’electrodeposition et des electrodepots de pates ceramiques. Silicates Ind. 41, 159–172 (1981)Google Scholar
  79. 79.
    Choudhary, J.Y., Ray, H.S., Rai, K.N.: Electrophoretic depositon of Alumina from aqueous suspensions. Trans. J. Br. Ceram. Soc. 81, 193–96 (1982)Google Scholar
  80. 80.
    Shane, M.J., Talbot, J.B., Schreiber, R.D.: Electrophoretic deposition of phosphors. I Conductivity and zeta potential measurements. J. Colloid Interface Sci. 165, 325–333 (1994)Google Scholar
  81. 81.
    DeBeer, E., Duval, J., Meulenkamp, E.A.: Electrophoretic deposition: a quantitative model for particle deposition and binder formation from alcohol-based suspensions. J. Colloid Interface Sci. 222, 117–124 (2000)Google Scholar
  82. 82.
    Bouyer, F., Foissy, A.: Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 82, 2001–2010 (1999)Google Scholar
  83. 83.
    Ferrari, B., Moreno, R.: Electrophoretic deposition of aqueous alumina slips. J. Eur. Ceram. Soc. 17, 549–556 (1997)Google Scholar
  84. 84.
    Moreno, R., Ferrari, B.: Effects of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Mater. Res. Bull. 35, 887–897 (2000)Google Scholar
  85. 85.
    Ferrari, B., Moreno, R.: The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater. Lett. 28, 353–355 (1996)Google Scholar
  86. 86.
    Popa, A.M., Vleugels, J., Vermant, J., Van Der Biest, O.: Influence of surfactant addition sequence on the suspension properties and electrophoretic deposition behavior of alumina and zirconia. J. Eur. Ceram. Soc. 26, 933–939 (2006)Google Scholar
  87. 87.
    Uchikoshi, T., Sakka, Y.: Phosphate esters as dispersants for the cathodic electrophoretic deposition of alumina suspensions. J. Am. Ceram. Soc. 91, 1923–1926 (2008)Google Scholar
  88. 88.
    Javidi, M., Javadpour, S., Bahrololoom, M.E., Ma, J., Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Mater. Sci. Eng. C. 28, 1509–1515 (2008)Google Scholar
  89. 89.
    Sun, H., Quan, X., Chen, S.: Preparation of well-adhered γ-Al2O3 washcoat on metallic wire mesh monoliths by electrophoretic deposition. Appl. Surface Sci. 253, 3303–3310 (2007)Google Scholar
  90. 90.
    Plešingerová, B., Súèik, G., Maryška, M., Horkavcová, D.: Hydroxyapatite coatings deposited from alcohol suspensions by electrophoretic deposition on titanium substrate. Ceramics-Silikáty 51, 15–23 (2007)Google Scholar
  91. 91.
    Tang, F., Uchikoshi, T., Ozawa, K., Sakka, Y.: Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2006)Google Scholar
  92. 92.
    Lebrette, S., Pagnoux, C., Abeland, P.: Fabrication of titania dense layers by electrophoretic deposition in aqueous media. J. Eur. Ceram. Soc. 26, 2727–2734 (2006)Google Scholar
  93. 93.
    Doungdaw, S., Uchikoshi, T., Noguchic, Y., Eamchotchawalit, C., Sakka, Y.: Deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Sci. Tech. Adv. Mater. 6, 927–932 (2005)Google Scholar
  94. 94.
    Wang, C., Ma, J., Cheng, W.: Formation of polyetherketone polymer coating by electrophoretic deposition method. Surf. Coat. Tech. 173, 271–275 (2003)Google Scholar
  95. 95.
    Ma, J., Wang, C., Peng, K.W.: Electrophoretic deposition of porous hydroxyapatite scaffold. Biomater 24, 3505–3510 (2003)Google Scholar
  96. 96.
    Wang, C., Ma, J., Cheng, W., Zhang, R.: Thick hydroxyapatite coatings by electrophoretic deposition. Mater. Lett. 57, 99–105 (2002)Google Scholar
  97. 97.
    Yamada, N., Shoji, H., Kubo, Y., Katayama, S.: Preparation of inorganic-organic hybrid films containing particles using electrophoretic deposition method. J. Mater. Sci. 37, 2071–2076 (2002)Google Scholar
  98. 98.
    Ogata, N., Van Tassel, J.J., Randall, C.A.: Electrode formation by electrophoretic deposition of nanopowders. Mater. Lett. 49, 7–14 (2000)Google Scholar
  99. 99.
    Chen, F., Liu, M.: Preparation of YSZ films on LSM and LSM-YSZ substrates using an electrophoretic deposition process. J. Eur. Ceram. Soc. 21, 127–134 (2001)Google Scholar
  100. 100.
    Tang, F.Q., Uchikoshi, T., Ozawa, K., Sakka, Y.: Electrophoretic deposition of aqueous nano-γ-Al2O3 suspensions. Mater. Res. Bull. 37, 653–660 (2003)Google Scholar
  101. 101.
    Put, S., Veugels, J., Van Der Biest, O.: Gradient profile prediction in functionally graded materials processed by electrophoretic deposition. Acta. Mater. 51, 6303–6317 (2003)Google Scholar
  102. 102.
    Carrique, F., Arroyo, F.J., Delgado, A.V.: Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic Stern layer on electrophoresis and DC conductivity. J. Colloid Interface Sci. 243, 351–361 (2001)Google Scholar
  103. 103.
    Oshima, H.: Electrical conductivity of a concentrated suspension of soft particles. J. Colloid Interface Sci. 229, 307–309 (2000)Google Scholar
  104. 104.
    Jonhson, T.J., Davis, E.J.: An analysis of electrophoresis of concentrated suspensions of colloidal particles. J. Colloid Interface Sci. 215, 397–408 (1999)Google Scholar
  105. 105.
    Saville, D.A.: The electrical conductivity of suspensions of charged particles in ionic solutions: the role of added counter-ions and nonspecific adsorption. J. Colloid Interface Sci. 91, 34–50 (1983)Google Scholar
  106. 106.
    Navaneetham, G., Posner, J.D.: Electrokinetic instabilities of non-dilute colloidal suspensions. Mech. Res. Commun. 36, 22–32 (2009)Google Scholar
  107. 107.
    Posner, J.D.: Properties and electrokinetics behavior of non-dilute colloidal suspensions. J. Fluid Mech. 619, 331–365 (2009)Google Scholar
  108. 108.
    Anné, G., Vanmeensel, K., Vleugels, J., Van Der Biest, O.: A mathematical description of the kinetics of the electrophoretic deposition process for Al2O3-based suspensions. J. Am. Ceram. Soc. 88, 2036–2039 (2005)Google Scholar
  109. 109.
    Ferrari, B., Moreno, R., Cuesta, J.A.: A resistivity model of electrophoretic deposition. Key. Eng. Mater. 314, 175–180 (2006)Google Scholar
  110. 110.
    Hasan, S.A., Kavich, D.W., Dickerson, J.H.: Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. Chem. Commun. 25, 3123–3725 (2009)Google Scholar
  111. 111.
    Nold, A., Zeiner, J., Assion, T., Clasen, R.: Electrophoretic deposition as rapid prototyping method. J. Eur. Ceram. Soc. 30, 1163–1170 (2010)Google Scholar
  112. 112.
    Chang, Y., Huang, S., Chen, Y.: Biomolecular nanopatterning by electrophoretic printing lithography. Small 1, 63–66 (2009)Google Scholar
  113. 113.
    Gardeshzadeh, A.R., Raissi, B., Marzbanrad, E., Mohebbi, H.: Fabrication of resistive CO gas sensor based on SnO2 nanopowders via low frequency AC electrophoretic deposition. J. Mater. Sci: Mater. Electron. 20, 127–131 (2009)Google Scholar
  114. 114.
    Neirinck, B., Fransaer, J., Van Der Biest, O., Vleugels, J.: Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem. Commun. 11, 57–60 (2009)Google Scholar
  115. 115.
    Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 29, 1837–1845 (2009)Google Scholar
  116. 116.
    Ferrari, B., Moreno, R.: Zirconia thick films deposited on Nickel by aqueous EPD. J. Electrochem. Soc. 147, 2987–2992 (2000)Google Scholar
  117. 117.
    Riahifar, R., Marzbanrad, E., Dehkordi, B.R., Zamani, C.: Role of substrate potential on filling the gap between two planar parallel electrodes in electrophoretic deposition. Mater. Lett. 64, 559–561 (2010)Google Scholar
  118. 118.
    Lee, J., Leu, I., Chung, Y., Hon, M.: Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process. Nanotech 17, 4445–4450 (2006)Google Scholar
  119. 119.
    Rha, S., Chou, T.P., Cao, G.: Characteristics of silicon oxide thin films prepared by sol electrophoretic deposition method using tetraethylorthosilicate as the precursor. Curr. Appl. Phys. 9, 551–555 (2009)Google Scholar
  120. 120.
    Van Tassel, J.J., Randall, C.A.: Ionic gradients at an electrode above the equilibrium limit current. 3. Stabilization of ion depleted conduction by a nanoporous alumina layer during electrophoretic deposition. J. Phys. Chem. C. 111, 3358–3365 (2007)Google Scholar
  121. 121.
    Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 30, 1187–1193 (2010)Google Scholar
  122. 122.
    De, D., Nicholson, P.S.: Role of the ionic depletion in deposition during the electrophoretic deposition. J. Am. Ceram. Soc. 81, 3031–3036 (1999)Google Scholar
  123. 123.
    Zhitomirsky, I.: Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 97, 279–317 (2002)PubMedGoogle Scholar
  124. 124.
    Ciou, S., Fung, K., Chiang, K.: Behaviors and mechanism of electrolyte electrophoresis during electrophoretic deposition. J. Power Sour. 175, 33–39 (2008)Google Scholar
  125. 125.
    Shan, M., Mao, X., Zhang, J., Wang, S.: Electrophoretic shaping of sub-micron alumina in ethanol. Ceram. Intern. 35, 1855–1861 (2009)Google Scholar
  126. 126.
    Kinzl, M., Reichmann, K., Andrejs, L.: Electrophoretic deposition of silver from organic PDADMAC-stabilized suspensions. J. Mater. Sci. 44, 3758–3763 (2009)Google Scholar
  127. 127.
    Simchi, S., Pishbin, F., Boccaccini, A.R.: Electrophoretic deposition of chitosan. Mater. Lett. 63, 2253–2256 (2009)Google Scholar
  128. 128.
    Ji, C., Shapiro, I.P., Xiao, P.: Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition: Effects of agglomerate size distribution on particle packing. J. Eur. Ceram. Soc. 29, 3167–3175 (2010)Google Scholar
  129. 129.
    Corni, I., Cannio, M., Romagnoli, M., Boccaccini, A.R.: Application of a neural network approach to the electrophoretic deposition of PEEK–alumina composite coatings. Mater. Res. Bull. 44, 1494–1501 (2009)Google Scholar
  130. 130.
    Kawakita, M., Uchikoshi, T., Kawakita, J., Sakka, Y.: Preparation of crystalline-oriented Titania photoelectrodes on ITO glasses from a 2-Propanol–2,4-Pentanedione solvent by electrophoretic deposition in a strong magnetic field. J. Am. Ceram. Soc. 92, 984–989 (2009)Google Scholar
  131. 131.
    Kadam, M.B., Sinha, B.B., Kalubarme, R.S., Pawar, S.H.: Transformation of MgB2 powder into superconducting film via electrophoretic deposition technique. J. All. Comp. 478, 467–473 (2009)Google Scholar
  132. 132.
    Santillán, M.J., Caneiro, A., Quaranta, N., Boccaccini, A.R.: Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). J. Eur. Ceram. Soc. 29, 1125–1132 (2009)Google Scholar
  133. 133.
    Novak, S., König, K.: Fabrication of alumina parts by electrophoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 35, 2823–2829 (2009)Google Scholar
  134. 134.
    Dor, S., Rühle, S., Ofir, A., et al.: The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids Surf.: Phys. Eng. Aspects 342, 70–75 (2009)Google Scholar
  135. 135.
    Plesingerova, B., Súèik, G., Maryska, M., Horkavcová, D.: Hydroxyapatite coatings deposited from alcohol suspensions by electrophoretic deposition on titanium substrate. Ceramics 51, 15–23 (2007)Google Scholar
  136. 136.
    Gonzalo-Juan, I., Ferrari, B., Colomer, M.T.: Influence of the urea content on the YSZ hydrothermal synthesis under dilute conditions and its role as dispersant agent in the post-reaction medium. J. Eur. Ceram. Soc. 29, 3185–3195 (2009)Google Scholar
  137. 137.
    Xu, H., Shapiro, I.P., Xiao, P.: The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension. J. Eur. Ceram. Soc. 30, 1105–1114 (2010)Google Scholar
  138. 138.
    Radice, S., Bradbury, C.R., Michler, J., Mischler, S.: Critical particle concentration in electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1079–1088 (2010)Google Scholar
  139. 139.
    Uni, H.N., Yang, C.: Colloidal particle deposition from electrokinetics flow in a microfluidic cannel. Electrophoresis 30, 732–741 (2009)Google Scholar
  140. 140.
    Jia, S., Banerjee, S., Herman, I.P.: Mechanism of the electrophoretic deposition of CdSe Nanocrystal films: Influence of the nanocrystal surface charge. J. Phys. Chem. C. 112, 162–171 (2008)Google Scholar
  141. 141.
    Hasan, S., Kavich, D.W., Mahajan, S.V., Dickerson, J.H.: Electrophoretic deposition of CdSe nanocrystal films onto dielectric thin films. Thin Solid Films 517, 2665–2669 (2009)Google Scholar
  142. 142.
    Ovtar, S., Lisjak, D., Drofenik, M.: Barium hexaferrite suspensions for electrophoretic deposition. J. Colloid Interface Sci. 337, 456–463 (2009)PubMedGoogle Scholar
  143. 143.
    Wang, Y., Zhitomirsky, I.: Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009)PubMedGoogle Scholar
  144. 144.
    Bhosale, A.C., Kadam, M.B., Joshi, R., et al.: Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films. J. Alloys Comp. 484, 795–800 (2009)Google Scholar
  145. 145.
    Doungdaw, S., Uchikoshi, T., Noguchic, Y.: Electrophoretic deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Sci. Tech. Adv. Mater. 6, 927–932 (2005)Google Scholar
  146. 146.
    Chung, Y., Leu, I., Lee, J., Hon, M.: Electrophoretic deposition kinetics of ZnO nanoparticles into an opal template and fabrication of well-ordered macroporous structure. J. Electrochem. Soc. 156, E91–E95 (2009)Google Scholar
  147. 147.
    Chung, Y., Leu, I., Lee, J., Hon, M.: Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal. Electrochem. Acta. 54, 3677–3682 (2009)Google Scholar
  148. 148.
    Kurokawa, S., Kikuchi, T., Sakairi, M., Takahashi, H.: Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating. Electrochim. Acta. 53, 8118–8127 (2008)Google Scholar
  149. 149.
    Xue, L., Kajiyoshi, K., Yan, Y.: Preparation of highly oriented titania nanosheet thin films by electrophoretic deposition. Thin Solid Films 518, 10–15 (2009)Google Scholar
  150. 150.
    Lin, T., Huang, W., Jun, I., Jiang, P.: Electrophoretic co-deposition of biomimetic nanoplatelet-polyelectrolyte composites. Electrochem. Commun. 11, 1635–1638 (2009)Google Scholar
  151. 151.
    Zhang, L., Vleugels, J., Van Der Biest, O.: Fraction of textural alumina by orienting template particles during electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1195–1202 (2010)Google Scholar
  152. 152.
    Zhao, L., Yu, J., Fan, J.: Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method. Electrochem. Commun. 11, 2052–2055 (2009)Google Scholar
  153. 153.
    Lin, T., Huang, W., Jun, I., Jiang, P.: Electrophoretic deposition of biomimetic nanocomposites. Electrochem. Commun. 11, 14–17 (2009)Google Scholar
  154. 154.
    Verde, M., Caballero, A.C., Iglesias, Y., Villegas, M., Ferrari, B.: Electrophoretic deposition of flake-shaped ZnO nanoparticles. J. Electrochem. Soc. 157, H55–H59 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de Cerámica y Vidrio, CSICMadridSpain

Personalised recommendations