Skip to main content

Nanoparticles Dispersion and the Effect of Related Parameters in the EPD Kinetics

  • Chapter
  • First Online:
Electrophoretic Deposition of Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, the stabilization of nanoparticles in liquid media is studied on the basis of the colloid science foundations. The most common dispersing mechanisms, i.e. electrostatic and steric, are reviewed. After the stabilization of the particles, an additional step is the deposition process, whose kinetics depends on a number of parameters related to both the suspension and the applied conditions. This chapter reviews the quantitative models existing in the literature to explain and predict the deposit formation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a:

Particle radius

A:

Hamaker constant

B:

London constant

Cd :

Deposit concentration

Cs :

Solid content of the suspension

Cs,0 :

Initial solid content of the suspension

D:

Particle diameter

E:

Electric field

Eef :

Effective electric field

f:

Efficiency factor or sticking parameter

I:

Electric Current

I+ :

Electric current transported by the cations

I :

Electric current transported by the anions

Ip :

Electric current transported by the particles

i0 :

Initial current density

i:

Current density

K:

Kinetics parameter

L:

Electrode distance

m:

Deposited mass

m0 :

Initial mass of powder in suspension

R:

Roughness

S:

Deposition surface area

SWE :

Conduction surface area

t:

Deposition time

V:

Volume of the suspension

Vd :

Volume of the deposit

1/κ :

Debye length

ε d :

Dielectric constants of the deposit

ε s :

Dielectric constants of the suspension

ε r,l :

Dielectric constant of the solvent

ε r,p :

Dielectric constant of the particles

ε 0 :

Vacuum dielectric constant

φ d :

Volumetric fraction of the deposit

φ s :

Volumetric fraction of the suspension

φ s, 0 :

Initial volumetric fraction of the suspension

η :

Solvent viscosity

µ :

Electrophoretic mobility

v:

Electrophoresis rate

ρ s :

Resistivity of the suspension

ρ s, :

Resistivity of the suspension at infinite time

ρ d :

Resistivity of the deposit

ρ + :

Resistivity associated to the cations

ρ :

Resistivity associated to the anions

ρ p :

Resistivity associated to the particles

ρ s,0 :

Initial resistivity of the suspension

Δ :

Deposit thickness

σ s :

Conductivity of the suspension

ρ s, :

Conductivity of the liquid medium

τ :

Characteristic deposition time

τ 0 :

Characteristic deposition time for initial conditions

τ :

The characteristic deposition time for final conditions

ψ :

Potential drop and surface potential

ψ a :

Potential drop at the anode

ψ c :

Potential drop at the cathode

ζ :

Zeta potential

References

  1. Pileni, M.P.: Nanosized particles made in colloidal assemblies. Langmuir 13, 3266–3276 (1997)

    CAS  Google Scholar 

  2. Knauth, P., Schoonmann, J. (eds.): Nanostructured materials. Selected synthesis methods, properties and applications. Kluwer, New York (2004)

    Google Scholar 

  3. Taniguchi, N.: On the basic concept of nanotechnology. Proc. ICPE, Japan (1974)

    Google Scholar 

  4. http://www.ipt.arc.nasa.gov/nanotechnology.html. Accessed Jan 2010

    Google Scholar 

  5. Caruso, F.: Nanoengineering of particle surfaces. Adv. Mater. 13, 11–22 (2001)

    CAS  Google Scholar 

  6. Zeng, H., Li, J., Liu, J.P., Huang, C.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle selfassembly. Nature 420, 395–398 (2002)

    CAS  PubMed  Google Scholar 

  7. Caruso, F.: Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloidal particles. Wiley, Germany (2003)

    Google Scholar 

  8. Fahlman, B.D.: Materials chemistry. Springer, The Netherlands (2007)

    Google Scholar 

  9. Sergeev, G.B.: Nanochemistry. Mos. Gos. Univ., Moscow. (2003)

    Google Scholar 

  10. Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)

    CAS  Google Scholar 

  11. Sigmund, W.M., Bell, N.S., Bergström, L.: Novel powder-processing methods for advanced ceramics. J. Am. Ceram. Soc. 83, 1557–1574 (2000)

    CAS  Google Scholar 

  12. Finke, R.G.: Transition metal nanoclusters in metal nanoparticles: synthesis, characterization, and applications. Dekker, New York (2002)

    Google Scholar 

  13. Richerson, D.W.: Modern ceramic engineering—properties, processing and use in design, 2nd edn. Dekker, New York (1992)

    Google Scholar 

  14. Ashby, M., Shercliff, H., Cebon, D. Materials. Engineering, science, processing and design. Elsevier, Oxford (2007)

    Google Scholar 

  15. Jaschinski, W., Nagel, A.: Possibilities and limits in the shaping of ceramic powdes. Interceram 42, 135–139 (1993)

    CAS  Google Scholar 

  16. Onoda, G.Y., Hench, L.L. (eds.): Ceramic processing before firing. Wiley, New York (1978)

    Google Scholar 

  17. Reed, J.S.: Introduction to the principles of ceramic processing, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  18. Buchkremer, H.P., Menzler, N.H.: Ceramic processing (Chap. 24). In: Groza, J.R., Shackelford, J.F., Lavernia, E.J., Powers, M.T. (eds.) Material processing handbook. CRC Press, Boca Raton (2007)

    Google Scholar 

  19. Wang, F.F.Y. (ed.): Treatise on materials science and technology, vol 9: ceramic fabrication processes. Academic Press, New York (1978)

    Google Scholar 

  20. Brinker, C.J., Clark, D.E., Ulrich, D.R. (eds.): Better ceramics through chemistry. Mat. Res. Soc. Proc., vol 32, North-Holland (1984)

    Google Scholar 

  21. Moreno, R.: Trends in slip forming of ceramics. Bol. Soc. Esp. Ceram. Vidr. 39, 601–608 (2000)

    CAS  Google Scholar 

  22. Tari, G.: Gelcasting ceramics: a review. Am. Ceram. Soc. Bull. 82, 43–47 (2003)

    CAS  Google Scholar 

  23. Wang, L.A., Aldinger, F.: Near-net shape forming of advanced ceramics. Adv. Eng. Mater. 3, 110–113 (2000)

    Google Scholar 

  24. Lewis, J.A.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341–2359 (2000)

    CAS  Google Scholar 

  25. Kingery, W.D. (ed.): Ceramic fabrication orocesses, pp. 5–51. MIT Press: Cambridge (1958)

    Google Scholar 

  26. Shanefield, D.J.: Organic additives and ceramic processing, 2nd edn. Kluwer, Norwell (1996)

    Google Scholar 

  27. Moreno, R.: The role of slip additives in tape casting technology. Part I: solvents and dispersants. Am. Ceram. Soc. Bull. 71, 1521–1531 (1992)

    CAS  Google Scholar 

  28. Moreno, R.: The role of slip additives in tape casting technology. Part II: binders and plasticizers. Am. Ceram. Soc. Bull. 71, 1647–1656 (1992)

    CAS  Google Scholar 

  29. Hench, L.L., Ulrich, D.R. (eds.): Ultrastructure processing of ceramics, glasses and composites. Wiley, New York (1984)

    Google Scholar 

  30. Aksay, I.A., Lange, F.F., Davis, B.I.: Uniformity of Al2O3/ZrO2 composites by colloidal filtration. J. Am. Ceram. Soc. 60, C190–C192 (1983)

    Google Scholar 

  31. Pashley, R.M., Karaman, M.E.: Applied colloid and surface chemistry. Wiley, West Sussex (2004)

    Google Scholar 

  32. Hiemenz, P.C.: Principles of colloid and surface chemistry, 3rd edn. Dekker, New York (1997)

    Google Scholar 

  33. Hunter, R.J.: Foundations of colloid science, vol. 1, Clarendon Press, Oxford (1987)

    Google Scholar 

  34. Israelachvili, J.N.: Intermolecular and surface forces. Academic Press, London (1985)

    Google Scholar 

  35. Shaw, D.J.: Introduction to colloid and surface chemistry, 4th edn. Butterworth-Heinemann, Oxford (1992)

    Google Scholar 

  36. Cosgrove, T. (ed.): Colloid science. Principles, methods and applications. Blackwell, Oxford (2005)

    Google Scholar 

  37. Holmberg, K. (ed.): Handbook of advanced surface and colloid chemistry. Wiley, West Sussex (2002)

    Google Scholar 

  38. Everett, D.H.: Basic principles of colloid science. The Royal Society of Chemistry, London (1988)

    Google Scholar 

  39. Pugh, R.J., Bergström, L. (eds.): Surface and colloid chemistry in advanced ceramics processing. Dekker, New York (1994)

    Google Scholar 

  40. Bergstrom, L.: Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 70, 125–169 (1997)

    CAS  Google Scholar 

  41. Parks, G.A., De Bruyn, P.L.: The zero point of charge of oxides. J. Phys. Chem. 66, 967–972 (1962)

    CAS  Google Scholar 

  42. Tadros, T.F. (ed.): Surfactants. Academic Press, London (1984)

    Google Scholar 

  43. Napper, D.H.: Steric stabilization. J. Colloid Interface Sci., 58, 390–407 (1977)

    CAS  Google Scholar 

  44. Napper, D.H.: Polymeric stabilization of colloidal dispersions. Academic Press, London (1983)

    Google Scholar 

  45. Ruda, H.E., Polanyi, J.C., Yang, S.Y.: Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Res. Lett. 1, 99–119 (2006)

    PubMed Central  Google Scholar 

  46. Corni, I., Ryan, M.P., Boccaccini, A.R.: Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)

    CAS  Google Scholar 

  47. Cao, G., Liu, D.: Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 136, 45–64 (2008)

    CAS  PubMed  Google Scholar 

  48. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)

    CAS  Google Scholar 

  49. Boccaccini, A.R., Cho, J., Subhani, T.: Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J. Eur. Ceram. Soc. 30, 1115–1129 (2010)

    CAS  Google Scholar 

  50. Boccaccini, A.R., Roether, J.A., Thomas, B.J.C., Shapper, M.S.P., Chavez, E., Stoll, E., Minay, E.J.: The electrophoretic deposition of inorganic nanoscaled materials. J. Ceram. Soc. Jpn. 114, 1–14 (2006)

    CAS  Google Scholar 

  51. Moreno, R., Ferrari, B.: Advanced ceramics via EPD of aqueous slurries. Am. Ceram. Soc. Bull. 79, 44–48 (2000)

    CAS  Google Scholar 

  52. Ferrari, B., González, S., Moreno, R., Baudín, C.: Multilayer coatings with improved reliability produced by aqueous electrophoretic deposition. J. Eur. Ceram. Soc. 26, 27–36 (2006)

    CAS  Google Scholar 

  53. Ji, C., Lan, W., Xiao, P.: Fabrication of yttria-stabilized zirconia coatings using electrophoretic deposition: packing mechanism during deposition. J. Am. Ceram. Soc. 91, 1102–1109 (2008)

    CAS  Google Scholar 

  54. Ferrari, B., Moreno, R.: EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)

    CAS  Google Scholar 

  55. Hamaker, H.C.: Formation of a deposit by electrophoresis. Trans. Faraday Soc. 36, 279–287 (1940)

    CAS  Google Scholar 

  56. Hirata, Y., Nishimoto, A., Ishisara, Y.: Forming of alumina powder by electrophoretic deposition. J. Ceram. Soc. Jpn. Int. Ed. 99, 105–109 (1991)

    Google Scholar 

  57. Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1897–2002 (1996)

    Google Scholar 

  58. Zhang, Z., Huang, Y., Jiang, Z.: Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media. J. Am. Ceram. Soc. 77, 1946–1949 (1994)

    CAS  Google Scholar 

  59. Patel, M.N., Williams, R.D., May, R.A.: Electrophoretic deposition of Au nanocrystals inside perpendicular mesochannels of TiO2. Chem. Mater. 20, 6029–6040 (2008)

    CAS  Google Scholar 

  60. Bao, Y., Nicholson, P.S.: Constant current electrophoretic infiltration deposition of fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 90, 1063–1070 (2007)

    CAS  Google Scholar 

  61. Wang, Y.C., Leu, I.C., Hon, M.H.: Size control of ZnO nano-fibril within template by electrophoretic deposition. Electrochem. Solid-State Lett. 7, D15–D18 (2004)

    CAS  Google Scholar 

  62. Haber, S., Gal-Or, L.: Deep electrophoretic penetration and deposition of ceramic particles inside porous substrates I: analytical model. J. Electrochem. Soc. 139, 1071–1077 (1992)

    CAS  Google Scholar 

  63. Haber, S., Liubovich, S., Gal-Or, L.: Deep electrophoretic penetration and deposition of ceramic particles inside porous substrates II: experimental model. J. Electrochem. Soc. 139, 1078–1081 (1992)

    Google Scholar 

  64. Will, J., Hruschka, M.K.M., Gubler, L., Gauckler, L.J.: Electrophoretic deposition of zirconia on porous anodic substrates. J. Am. Ceram. Soc. 84, 328–332 (2001)

    CAS  Google Scholar 

  65. Chen, C.Y., Chen, S.Y., Liu, D.M.: Electrophoretic deposition forming of porous Alumina membranes. Acta. Mater. 47, 2717–2726 (1999)

    CAS  Google Scholar 

  66. Bonnas, S., Ritzhaupt-Kleissl, H.J., Haußelt, J.: Fabrication of particle and composition gradients by systematic interaction of sedimentation and electrical field in electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1177–1185 (2010)

    CAS  Google Scholar 

  67. Biesheuvel, P.M., Verweij, H.: Theory of cast formation in electrophoretic deposition. J. Am. Ceram. Soc. 82, 1451–1455 (1999)

    CAS  Google Scholar 

  68. Gonzalez-Cuenca, M., Biesheuvel, P.M., Verweij, H.: Modeling constant voltage electrophoretic deposition from stirred suspension. Aiche. J. 46, 626–631 (2000)

    CAS  Google Scholar 

  69. Ma, J., Cheng, W.: Electrophoretic deposition of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 85, 1735–1737 (2002)

    CAS  Google Scholar 

  70. Stappers, L., Zhang, L., Van Der Biest, O., Fransaer, J.: The effect of electrolyte conductivity on electrophoretic deposition. J. Colloid Interface Sci. 328(2), 436–446 (2008)

    CAS  PubMed  Google Scholar 

  71. Pignolet, C., Filiarte, C., Foissy, A.: Influence of surfactant counter-ions during electrophoretic particle deposition. Langmuir 24, 10181–10186 (2008)

    CAS  PubMed  Google Scholar 

  72. Anné, G., Vanmeensel, K., Vleugels, J., Van Der Biest, O.: Influence of the suspension composition on the electric field and deposition rate during electrophoretic deposition. Colloids Surf.: Phys. Eng. Aspects 245, 35–39 (2004)

    Google Scholar 

  73. Van Der Biest, O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999)

    Google Scholar 

  74. Ciou, S.J., Funga, K.Z., Chiang, K.W.: Behaviors and mechanism of electrolyte electrophoresis during electrophoretic deposition. J. Power Sources 175, 33–39 (2008)

    CAS  Google Scholar 

  75. Ciou, S.J., Funga, K.Z., Chiang, K.W.: A comparison of the artificial neural network model and the theoretical model used for expressing the kinetics of electrophoretic deposition of YSZ on LSM. J. Power Sources 175, 338–344 (2008)

    CAS  Google Scholar 

  76. Anné, G., Neirinck, B., Vanmeensel, K., Van Der Biest, O., Vleugels, J.: Origin of the potential drop over the deposit during electrophoretic deposition. J. Am. Ceram. Soc. 89, 823–828 (2006)

    Google Scholar 

  77. Wang, Y.C., Leu, I.C., Hon, M.H.: Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings. J. Am. Ceram. Soc. 87, 84–88 (2004)

    CAS  Google Scholar 

  78. Vander Poorten, H.: Caracterisation de l’electrodeposition et des electrodepots de pates ceramiques. Silicates Ind. 41, 159–172 (1981)

    Google Scholar 

  79. Choudhary, J.Y., Ray, H.S., Rai, K.N.: Electrophoretic depositon of Alumina from aqueous suspensions. Trans. J. Br. Ceram. Soc. 81, 193–96 (1982)

    Google Scholar 

  80. Shane, M.J., Talbot, J.B., Schreiber, R.D.: Electrophoretic deposition of phosphors. I Conductivity and zeta potential measurements. J. Colloid Interface Sci. 165, 325–333 (1994)

    CAS  Google Scholar 

  81. DeBeer, E., Duval, J., Meulenkamp, E.A.: Electrophoretic deposition: a quantitative model for particle deposition and binder formation from alcohol-based suspensions. J. Colloid Interface Sci. 222, 117–124 (2000)

    CAS  Google Scholar 

  82. Bouyer, F., Foissy, A.: Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 82, 2001–2010 (1999)

    CAS  Google Scholar 

  83. Ferrari, B., Moreno, R.: Electrophoretic deposition of aqueous alumina slips. J. Eur. Ceram. Soc. 17, 549–556 (1997)

    CAS  Google Scholar 

  84. Moreno, R., Ferrari, B.: Effects of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Mater. Res. Bull. 35, 887–897 (2000)

    CAS  Google Scholar 

  85. Ferrari, B., Moreno, R.: The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater. Lett. 28, 353–355 (1996)

    CAS  Google Scholar 

  86. Popa, A.M., Vleugels, J., Vermant, J., Van Der Biest, O.: Influence of surfactant addition sequence on the suspension properties and electrophoretic deposition behavior of alumina and zirconia. J. Eur. Ceram. Soc. 26, 933–939 (2006)

    CAS  Google Scholar 

  87. Uchikoshi, T., Sakka, Y.: Phosphate esters as dispersants for the cathodic electrophoretic deposition of alumina suspensions. J. Am. Ceram. Soc. 91, 1923–1926 (2008)

    CAS  Google Scholar 

  88. Javidi, M., Javadpour, S., Bahrololoom, M.E., Ma, J., Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Mater. Sci. Eng. C. 28, 1509–1515 (2008)

    CAS  Google Scholar 

  89. Sun, H., Quan, X., Chen, S.: Preparation of well-adhered γ-Al2O3 washcoat on metallic wire mesh monoliths by electrophoretic deposition. Appl. Surface Sci. 253, 3303–3310 (2007)

    CAS  Google Scholar 

  90. Plešingerová, B., Súèik, G., Maryška, M., Horkavcová, D.: Hydroxyapatite coatings deposited from alcohol suspensions by electrophoretic deposition on titanium substrate. Ceramics-Silikáty 51, 15–23 (2007)

    Google Scholar 

  91. Tang, F., Uchikoshi, T., Ozawa, K., Sakka, Y.: Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2006)

    CAS  Google Scholar 

  92. Lebrette, S., Pagnoux, C., Abeland, P.: Fabrication of titania dense layers by electrophoretic deposition in aqueous media. J. Eur. Ceram. Soc. 26, 2727–2734 (2006)

    CAS  Google Scholar 

  93. Doungdaw, S., Uchikoshi, T., Noguchic, Y., Eamchotchawalit, C., Sakka, Y.: Deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Sci. Tech. Adv. Mater. 6, 927–932 (2005)

    CAS  Google Scholar 

  94. Wang, C., Ma, J., Cheng, W.: Formation of polyetherketone polymer coating by electrophoretic deposition method. Surf. Coat. Tech. 173, 271–275 (2003)

    CAS  Google Scholar 

  95. Ma, J., Wang, C., Peng, K.W.: Electrophoretic deposition of porous hydroxyapatite scaffold. Biomater 24, 3505–3510 (2003)

    CAS  Google Scholar 

  96. Wang, C., Ma, J., Cheng, W., Zhang, R.: Thick hydroxyapatite coatings by electrophoretic deposition. Mater. Lett. 57, 99–105 (2002)

    CAS  Google Scholar 

  97. Yamada, N., Shoji, H., Kubo, Y., Katayama, S.: Preparation of inorganic-organic hybrid films containing particles using electrophoretic deposition method. J. Mater. Sci. 37, 2071–2076 (2002)

    CAS  Google Scholar 

  98. Ogata, N., Van Tassel, J.J., Randall, C.A.: Electrode formation by electrophoretic deposition of nanopowders. Mater. Lett. 49, 7–14 (2000)

    Google Scholar 

  99. Chen, F., Liu, M.: Preparation of YSZ films on LSM and LSM-YSZ substrates using an electrophoretic deposition process. J. Eur. Ceram. Soc. 21, 127–134 (2001)

    CAS  Google Scholar 

  100. Tang, F.Q., Uchikoshi, T., Ozawa, K., Sakka, Y.: Electrophoretic deposition of aqueous nano-γ-Al2O3 suspensions. Mater. Res. Bull. 37, 653–660 (2003)

    Google Scholar 

  101. Put, S., Veugels, J., Van Der Biest, O.: Gradient profile prediction in functionally graded materials processed by electrophoretic deposition. Acta. Mater. 51, 6303–6317 (2003)

    CAS  Google Scholar 

  102. Carrique, F., Arroyo, F.J., Delgado, A.V.: Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic Stern layer on electrophoresis and DC conductivity. J. Colloid Interface Sci. 243, 351–361 (2001)

    CAS  Google Scholar 

  103. Oshima, H.: Electrical conductivity of a concentrated suspension of soft particles. J. Colloid Interface Sci. 229, 307–309 (2000)

    Google Scholar 

  104. Jonhson, T.J., Davis, E.J.: An analysis of electrophoresis of concentrated suspensions of colloidal particles. J. Colloid Interface Sci. 215, 397–408 (1999)

    Google Scholar 

  105. Saville, D.A.: The electrical conductivity of suspensions of charged particles in ionic solutions: the role of added counter-ions and nonspecific adsorption. J. Colloid Interface Sci. 91, 34–50 (1983)

    CAS  Google Scholar 

  106. Navaneetham, G., Posner, J.D.: Electrokinetic instabilities of non-dilute colloidal suspensions. Mech. Res. Commun. 36, 22–32 (2009)

    Google Scholar 

  107. Posner, J.D.: Properties and electrokinetics behavior of non-dilute colloidal suspensions. J. Fluid Mech. 619, 331–365 (2009)

    Google Scholar 

  108. Anné, G., Vanmeensel, K., Vleugels, J., Van Der Biest, O.: A mathematical description of the kinetics of the electrophoretic deposition process for Al2O3-based suspensions. J. Am. Ceram. Soc. 88, 2036–2039 (2005)

    Google Scholar 

  109. Ferrari, B., Moreno, R., Cuesta, J.A.: A resistivity model of electrophoretic deposition. Key. Eng. Mater. 314, 175–180 (2006)

    Google Scholar 

  110. Hasan, S.A., Kavich, D.W., Dickerson, J.H.: Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. Chem. Commun. 25, 3123–3725 (2009)

    Google Scholar 

  111. Nold, A., Zeiner, J., Assion, T., Clasen, R.: Electrophoretic deposition as rapid prototyping method. J. Eur. Ceram. Soc. 30, 1163–1170 (2010)

    CAS  Google Scholar 

  112. Chang, Y., Huang, S., Chen, Y.: Biomolecular nanopatterning by electrophoretic printing lithography. Small 1, 63–66 (2009)

    Google Scholar 

  113. Gardeshzadeh, A.R., Raissi, B., Marzbanrad, E., Mohebbi, H.: Fabrication of resistive CO gas sensor based on SnO2 nanopowders via low frequency AC electrophoretic deposition. J. Mater. Sci: Mater. Electron. 20, 127–131 (2009)

    CAS  Google Scholar 

  114. Neirinck, B., Fransaer, J., Van Der Biest, O., Vleugels, J.: Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem. Commun. 11, 57–60 (2009)

    CAS  Google Scholar 

  115. Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 29, 1837–1845 (2009)

    CAS  Google Scholar 

  116. Ferrari, B., Moreno, R.: Zirconia thick films deposited on Nickel by aqueous EPD. J. Electrochem. Soc. 147, 2987–2992 (2000)

    CAS  Google Scholar 

  117. Riahifar, R., Marzbanrad, E., Dehkordi, B.R., Zamani, C.: Role of substrate potential on filling the gap between two planar parallel electrodes in electrophoretic deposition. Mater. Lett. 64, 559–561 (2010)

    CAS  Google Scholar 

  118. Lee, J., Leu, I., Chung, Y., Hon, M.: Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process. Nanotech 17, 4445–4450 (2006)

    CAS  Google Scholar 

  119. Rha, S., Chou, T.P., Cao, G.: Characteristics of silicon oxide thin films prepared by sol electrophoretic deposition method using tetraethylorthosilicate as the precursor. Curr. Appl. Phys. 9, 551–555 (2009)

    Google Scholar 

  120. Van Tassel, J.J., Randall, C.A.: Ionic gradients at an electrode above the equilibrium limit current. 3. Stabilization of ion depleted conduction by a nanoporous alumina layer during electrophoretic deposition. J. Phys. Chem. C. 111, 3358–3365 (2007)

    Google Scholar 

  121. Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 30, 1187–1193 (2010)

    CAS  Google Scholar 

  122. De, D., Nicholson, P.S.: Role of the ionic depletion in deposition during the electrophoretic deposition. J. Am. Ceram. Soc. 81, 3031–3036 (1999)

    Google Scholar 

  123. Zhitomirsky, I.: Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 97, 279–317 (2002)

    CAS  PubMed  Google Scholar 

  124. Ciou, S., Fung, K., Chiang, K.: Behaviors and mechanism of electrolyte electrophoresis during electrophoretic deposition. J. Power Sour. 175, 33–39 (2008)

    CAS  Google Scholar 

  125. Shan, M., Mao, X., Zhang, J., Wang, S.: Electrophoretic shaping of sub-micron alumina in ethanol. Ceram. Intern. 35, 1855–1861 (2009)

    CAS  Google Scholar 

  126. Kinzl, M., Reichmann, K., Andrejs, L.: Electrophoretic deposition of silver from organic PDADMAC-stabilized suspensions. J. Mater. Sci. 44, 3758–3763 (2009)

    CAS  Google Scholar 

  127. Simchi, S., Pishbin, F., Boccaccini, A.R.: Electrophoretic deposition of chitosan. Mater. Lett. 63, 2253–2256 (2009)

    CAS  Google Scholar 

  128. Ji, C., Shapiro, I.P., Xiao, P.: Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition: Effects of agglomerate size distribution on particle packing. J. Eur. Ceram. Soc. 29, 3167–3175 (2010)

    Google Scholar 

  129. Corni, I., Cannio, M., Romagnoli, M., Boccaccini, A.R.: Application of a neural network approach to the electrophoretic deposition of PEEK–alumina composite coatings. Mater. Res. Bull. 44, 1494–1501 (2009)

    CAS  Google Scholar 

  130. Kawakita, M., Uchikoshi, T., Kawakita, J., Sakka, Y.: Preparation of crystalline-oriented Titania photoelectrodes on ITO glasses from a 2-Propanol–2,4-Pentanedione solvent by electrophoretic deposition in a strong magnetic field. J. Am. Ceram. Soc. 92, 984–989 (2009)

    CAS  Google Scholar 

  131. Kadam, M.B., Sinha, B.B., Kalubarme, R.S., Pawar, S.H.: Transformation of MgB2 powder into superconducting film via electrophoretic deposition technique. J. All. Comp. 478, 467–473 (2009)

    CAS  Google Scholar 

  132. Santillán, M.J., Caneiro, A., Quaranta, N., Boccaccini, A.R.: Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). J. Eur. Ceram. Soc. 29, 1125–1132 (2009)

    Google Scholar 

  133. Novak, S., König, K.: Fabrication of alumina parts by electrophoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 35, 2823–2829 (2009)

    CAS  Google Scholar 

  134. Dor, S., Rühle, S., Ofir, A., et al.: The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids Surf.: Phys. Eng. Aspects 342, 70–75 (2009)

    CAS  Google Scholar 

  135. Plesingerova, B., Súèik, G., Maryska, M., Horkavcová, D.: Hydroxyapatite coatings deposited from alcohol suspensions by electrophoretic deposition on titanium substrate. Ceramics 51, 15–23 (2007)

    CAS  Google Scholar 

  136. Gonzalo-Juan, I., Ferrari, B., Colomer, M.T.: Influence of the urea content on the YSZ hydrothermal synthesis under dilute conditions and its role as dispersant agent in the post-reaction medium. J. Eur. Ceram. Soc. 29, 3185–3195 (2009)

    CAS  Google Scholar 

  137. Xu, H., Shapiro, I.P., Xiao, P.: The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension. J. Eur. Ceram. Soc. 30, 1105–1114 (2010)

    CAS  Google Scholar 

  138. Radice, S., Bradbury, C.R., Michler, J., Mischler, S.: Critical particle concentration in electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1079–1088 (2010)

    CAS  Google Scholar 

  139. Uni, H.N., Yang, C.: Colloidal particle deposition from electrokinetics flow in a microfluidic cannel. Electrophoresis 30, 732–741 (2009)

    Google Scholar 

  140. Jia, S., Banerjee, S., Herman, I.P.: Mechanism of the electrophoretic deposition of CdSe Nanocrystal films: Influence of the nanocrystal surface charge. J. Phys. Chem. C. 112, 162–171 (2008)

    CAS  Google Scholar 

  141. Hasan, S., Kavich, D.W., Mahajan, S.V., Dickerson, J.H.: Electrophoretic deposition of CdSe nanocrystal films onto dielectric thin films. Thin Solid Films 517, 2665–2669 (2009)

    CAS  Google Scholar 

  142. Ovtar, S., Lisjak, D., Drofenik, M.: Barium hexaferrite suspensions for electrophoretic deposition. J. Colloid Interface Sci. 337, 456–463 (2009)

    CAS  PubMed  Google Scholar 

  143. Wang, Y., Zhitomirsky, I.: Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009)

    CAS  PubMed  Google Scholar 

  144. Bhosale, A.C., Kadam, M.B., Joshi, R., et al.: Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films. J. Alloys Comp. 484, 795–800 (2009)

    CAS  Google Scholar 

  145. Doungdaw, S., Uchikoshi, T., Noguchic, Y.: Electrophoretic deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Sci. Tech. Adv. Mater. 6, 927–932 (2005)

    CAS  Google Scholar 

  146. Chung, Y., Leu, I., Lee, J., Hon, M.: Electrophoretic deposition kinetics of ZnO nanoparticles into an opal template and fabrication of well-ordered macroporous structure. J. Electrochem. Soc. 156, E91–E95 (2009)

    CAS  Google Scholar 

  147. Chung, Y., Leu, I., Lee, J., Hon, M.: Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal. Electrochem. Acta. 54, 3677–3682 (2009)

    CAS  Google Scholar 

  148. Kurokawa, S., Kikuchi, T., Sakairi, M., Takahashi, H.: Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating. Electrochim. Acta. 53, 8118–8127 (2008)

    CAS  Google Scholar 

  149. Xue, L., Kajiyoshi, K., Yan, Y.: Preparation of highly oriented titania nanosheet thin films by electrophoretic deposition. Thin Solid Films 518, 10–15 (2009)

    CAS  Google Scholar 

  150. Lin, T., Huang, W., Jun, I., Jiang, P.: Electrophoretic co-deposition of biomimetic nanoplatelet-polyelectrolyte composites. Electrochem. Commun. 11, 1635–1638 (2009)

    CAS  Google Scholar 

  151. Zhang, L., Vleugels, J., Van Der Biest, O.: Fraction of textural alumina by orienting template particles during electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1195–1202 (2010)

    CAS  Google Scholar 

  152. Zhao, L., Yu, J., Fan, J.: Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method. Electrochem. Commun. 11, 2052–2055 (2009)

    CAS  Google Scholar 

  153. Lin, T., Huang, W., Jun, I., Jiang, P.: Electrophoretic deposition of biomimetic nanocomposites. Electrochem. Commun. 11, 14–17 (2009)

    CAS  Google Scholar 

  154. Verde, M., Caballero, A.C., Iglesias, Y., Villegas, M., Ferrari, B.: Electrophoretic deposition of flake-shaped ZnO nanoparticles. J. Electrochem. Soc. 157, H55–H59 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moreno, R., Ferrari, B. (2012). Nanoparticles Dispersion and the Effect of Related Parameters in the EPD Kinetics. In: Dickerson, J., Boccaccini, A. (eds) Electrophoretic Deposition of Nanomaterials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9730-2_2

Download citation

Publish with us

Policies and ethics