Skip to main content

A Sandwich Approach for Evacuation Time Bounds

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics

Abstract

In this article, we propose a novel modeling approach – the sandwich approach – to deal with evacuation time bounds (ETB) - in which lower and upper bounds for the evacuation time are calculated. A provable lower bound is achieved by computing a quickest flow, using a dynamic network flow model, an upper bound is obtained via simulation using a cellular automaton model. Coherence between the macroscopic network flow and the microscopic simulation model will be discussed. In order to validate our theoretical results, we report on our practical experiences with the Betzenberg, the region containing the Fritz-Walter soccer stadium in Kaiserslautern, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, L., Fulkerson, D.: Flows in networks (1962)

    Google Scholar 

  2. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. Mathematical Methods of Operations Research. 37, 31-58. Springer (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hamacher, H.W., Tjandra, S.A.: Mathematical Modelling of Evacuation Problem: A State of the Art. In: Schreckenber, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics. Springer, Verlag (2002)

    Google Scholar 

  4. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a 2-dimensional cellular automaton. Physica (Amsterdam) 295A, 507 (2001)

    Google Scholar 

  5. Kinkeldey, C.: Fußgängersimulation auf der Basis zellularer Automaten. Studienarbeit im Fach Bauinformatik, Universität Hannover (2003)

    Google Scholar 

  6. TraffGo HT. http://www.traffgo-ht.com/de/index.html

  7. Klein, W., Köster, G., Meister, A.: Towards the Calibration of Pedestrian Stream Model. Workshop on Complex Collective Systems, PPAM 2009, Wroclav 2009. To appear in Springer LNCS series (2010)

    Google Scholar 

  8. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I France. 2, 2221–2229 (1992)

    Article  Google Scholar 

  9. Weidmann, U.: Transporttechnik für Fußgänger. Schriftenreihe des IVT, 90 (1992)

    Google Scholar 

  10. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. arXiv: 0903.0149 [physics.soc-ph] (2009)

    Google Scholar 

  11. Davidich, M., Köster, G.: Towards Automatic and Robust Adjustment of Human Behavioral Parameters in a Pedestrian Stream Model to Measured Data. To appear in PED conference proceedings (2010)

    Google Scholar 

  12. Carson, Y., Maria, A.: Simulation optimization: methods and applications. Proceedings of the 29th conference on Winter simulation, 118-123 (1997)

    Google Scholar 

  13. Miller-Hooks, E., Patterson, S.: On solving quickest time problems in timedependent, dynamic networks. Journal of Mathematical Modelling and Algorithms, Springer. 3(1), 39-71 (2004)

    Article  MATH  Google Scholar 

  14. Hamacher, H.W., Leiner, K., Ruzika, S.: Quickest Cluster Flow Problems. To appear in conference proceedings (PED 2010)

    Google Scholar 

  15. Kneidl, A., Thiemann, M., Borrmann, A., Ruzika, S., Hamacher, H.W., Köster, G., Rank, E.: Bidirectional Coupling of Macroscopic and Microscopic Approaches for Pedestrian Behavior Prediction. To appear in PED conference proceedings (2010)

    Google Scholar 

Download references

Acknowledgments

This paper is supported in part by the Federal Ministry for Education and Research (Bundesministerium für Bildung und Forschung, BMBF), Project REPKA, under FKZ 13N9961 (TU Kaiserslautern), 13N9964 (Siemens)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.W. Hamacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hamacher, H., Heller, S., Klein, W., Köster, G., Ruzika, S. (2011). A Sandwich Approach for Evacuation Time Bounds. In: Peacock, R., Kuligowski, E., Averill, J. (eds) Pedestrian and Evacuation Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9725-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9725-8_45

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9724-1

  • Online ISBN: 978-1-4419-9725-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics