Skip to main content

Highly Conductivity and Transparent Carbon-Nanotube and Organic Semiconductor Hybrid Films: Exploiting Organic Semiconductor Energy Levels and Growth Mode

  • Chapter
  • First Online:
Book cover Investigating the Nucleation, Growth, and Energy Levels of Organic Semiconductors for High Performance Plastic Electronics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The previous chapters have focused on understanding and controlling organic semiconductor growth for high performance organic transistors. In this chapter, the lessons learned from studying organic semiconductor nucleation and growth for transistors are applied to improve the conductivity of carbon nanotube (CNT) networks for transparent electrode applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533–3539

    Article  CAS  Google Scholar 

  2. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9(5):1949–1955

    Article  CAS  Google Scholar 

  3. Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8(2):689–692

    Article  CAS  Google Scholar 

  4. Kang MG, Guo LJ (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19:1391

    Article  CAS  Google Scholar 

  5. Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219

    Article  CAS  Google Scholar 

  6. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Hebard Tanner DB, AF Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  Google Scholar 

  7. Gu H, Swager TM (2008) Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv Mater 20(23):4433–4437

    Article  CAS  Google Scholar 

  8. LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–4

    Article  CAS  Google Scholar 

  9. Hellstrom SL, Lee HW, Bao ZN (2009) Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. Acs Nano 3(6):1423–1430

    Article  CAS  Google Scholar 

  10. Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9(5):1866–1871

    Article  CAS  Google Scholar 

  11. Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun ZY, Windle AH, Ryan P, Niraj NPP, Wang ZTT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876

    Article  CAS  Google Scholar 

  12. Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett 84(26):6082–6085

    Article  CAS  Google Scholar 

  13. Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett

    Google Scholar 

  14. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89(7):075505

    Article  CAS  Google Scholar 

  15. Jang I, Sinnott SB, Danailov D, Keblinski P (2003) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4(1):109–114

    Article  Google Scholar 

  16. Ishaq A, Yan L, Zhu D (2009) The electrical conductivity of carbon nanotube sheets by ion beam irradiation. Nucl Instr Methods Phys Res Sect B Beam Interact Mat Atoms 267(10):1779–1782

    Article  CAS  Google Scholar 

  17. Velamakanni A, Magnuson CW, Ganesh KJ, Zhu Y, An J, Ferreira PJ, Ruoff RS. Site-specific deposition of au nanoparticles in CNT films by chemical bonding. ACS Nano

    Google Scholar 

  18. Ulbricht H, Moos G, Hertel T (2003) Interaction of C-60 with carbon nanotubes and graphite. Phys Rev Lett 90(9)

    Google Scholar 

  19. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104

    Article  CAS  Google Scholar 

  20. McGuire K, Gothard N, Gai PL, Dresselhaus MS, Sumanasekera G, Rao AM (2005) Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43(2):219–227

    Article  CAS  Google Scholar 

  21. Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, Hassanien A, Shandakov SD, Lolli G, Resasco DE, Choi M, Tomanek D, Kauppinen EI (2007) A novel hybrid carbon material. Nat Nano 2(3):156–161

    Article  CAS  Google Scholar 

  22. Pichler T, Kuzmany H, Kataura H, Achiba Y (2001) Metallic polymers of C60 inside single-walled carbon nanotubes. Phys Rev Lett 87(26):267401

    Article  CAS  Google Scholar 

  23. Kavan L, Dunsch L, Kataura H, Oshiyama A, Otani M, Okada S (2003) Electrochemical tuning of electronic structure of C60 and C70 fullerene peapods: in situ visible near-infrared and Raman study. J Phys Chem B 107(31):7666–7675

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Virkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Virkar, A. (2012). Highly Conductivity and Transparent Carbon-Nanotube and Organic Semiconductor Hybrid Films: Exploiting Organic Semiconductor Energy Levels and Growth Mode. In: Investigating the Nucleation, Growth, and Energy Levels of Organic Semiconductors for High Performance Plastic Electronics. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9704-3_7

Download citation

Publish with us

Policies and ethics