Advertisement

Highly Conductivity and Transparent Carbon-Nanotube and Organic Semiconductor Hybrid Films: Exploiting Organic Semiconductor Energy Levels and Growth Mode

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The previous chapters have focused on understanding and controlling organic semiconductor growth for high performance organic transistors. In this chapter, the lessons learned from studying organic semiconductor nucleation and growth for transistors are applied to improve the conductivity of carbon nanotube (CNT) networks for transparent electrode applications.

Keywords

Sheet Resistance Hybrid Film Organic Semiconductor Thionyl Chloride Aluminium Dope Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533–3539CrossRefGoogle Scholar
  2. 2.
    Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9(5):1949–1955CrossRefGoogle Scholar
  3. 3.
    Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8(2):689–692CrossRefGoogle Scholar
  4. 4.
    Kang MG, Guo LJ (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19:1391CrossRefGoogle Scholar
  5. 5.
    Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219CrossRefGoogle Scholar
  6. 6.
    Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Hebard Tanner DB, AF Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276CrossRefGoogle Scholar
  7. 7.
    Gu H, Swager TM (2008) Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv Mater 20(23):4433–4437CrossRefGoogle Scholar
  8. 8.
    LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–4CrossRefGoogle Scholar
  9. 9.
    Hellstrom SL, Lee HW, Bao ZN (2009) Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. Acs Nano 3(6):1423–1430CrossRefGoogle Scholar
  10. 10.
    Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9(5):1866–1871CrossRefGoogle Scholar
  11. 11.
    Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun ZY, Windle AH, Ryan P, Niraj NPP, Wang ZTT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876CrossRefGoogle Scholar
  12. 12.
    Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett 84(26):6082–6085CrossRefGoogle Scholar
  13. 13.
    Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano LettGoogle Scholar
  14. 14.
    Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89(7):075505CrossRefGoogle Scholar
  15. 15.
    Jang I, Sinnott SB, Danailov D, Keblinski P (2003) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4(1):109–114CrossRefGoogle Scholar
  16. 16.
    Ishaq A, Yan L, Zhu D (2009) The electrical conductivity of carbon nanotube sheets by ion beam irradiation. Nucl Instr Methods Phys Res Sect B Beam Interact Mat Atoms 267(10):1779–1782CrossRefGoogle Scholar
  17. 17.
    Velamakanni A, Magnuson CW, Ganesh KJ, Zhu Y, An J, Ferreira PJ, Ruoff RS. Site-specific deposition of au nanoparticles in CNT films by chemical bonding. ACS NanoGoogle Scholar
  18. 18.
    Ulbricht H, Moos G, Hertel T (2003) Interaction of C-60 with carbon nanotubes and graphite. Phys Rev Lett 90(9)Google Scholar
  19. 19.
    Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104CrossRefGoogle Scholar
  20. 20.
    McGuire K, Gothard N, Gai PL, Dresselhaus MS, Sumanasekera G, Rao AM (2005) Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43(2):219–227CrossRefGoogle Scholar
  21. 21.
    Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, Hassanien A, Shandakov SD, Lolli G, Resasco DE, Choi M, Tomanek D, Kauppinen EI (2007) A novel hybrid carbon material. Nat Nano 2(3):156–161CrossRefGoogle Scholar
  22. 22.
    Pichler T, Kuzmany H, Kataura H, Achiba Y (2001) Metallic polymers of C60 inside single-walled carbon nanotubes. Phys Rev Lett 87(26):267401CrossRefGoogle Scholar
  23. 23.
    Kavan L, Dunsch L, Kataura H, Oshiyama A, Otani M, Okada S (2003) Electrochemical tuning of electronic structure of C60 and C70 fullerene peapods: in situ visible near-infrared and Raman study. J Phys Chem B 107(31):7666–7675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.c3Nano Inc.Mountain ViewUSA

Personalised recommendations