Skip to main content

Antenna Design for Ultra-wideband Passive RFID Systems

  • Chapter
  • First Online:
Ultra-Wideband Radio Frequency Identification Systems
  • 1184 Accesses

Abstract

ntennas are one of the key components of all RF wireless communication and radar systems, including RFIDs, as they are responsible for the transmission and reception of free-space or through-barrier weak electromagnetic (EM) signals. The optimal design of antennas for a wideband EM wavefield continues to be an area of important research, one that is rapidly growing in many different fronts. For ­example, recent interest in the use of meta-materials materials with unusual dielectric properties, for designing the radiation pattern of antennas to reduce the size and cost of wireless components could lead to important antenna breakthroughs for RFID tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Time domain convolution associates the output of a linear, time-invariant system, \( y(t)\), to its input, \( x(t)\), and channel impulse response, \( h(t)\), by \( y(t)=x(t)*h(t)=\displaystyle {\int }_{-\infty }^{\infty }x(\tau)h(t-\tau)\text{\hspace{0.05em}}\text d\tau\), where \( t\)is a variable for time offset.

References

  1. C. A.Balanis, Antenna Theory. Analysis and Design, Wiley, New York, 2005, third edition.

    Google Scholar 

  2. Strutzman, W. L. and Thiele, G. A., Antenna Theory and Design, 2nd ed., Addison-Wesley Publishing Co., New York, 1992.

    Google Scholar 

  3. http://en.wikipedia.org/wiki/Antennas.

  4. (EDN Magazine, March 2002) entitled “Understanding electromagnetic fields and antenna radiation takes (almost) no math,” Ron Schmidt.

    Google Scholar 

  5. Stuart Down’s article (QEX Jan/Feb 2005), “Why Antennas Radiate,”

    Google Scholar 

  6. F. Dowla, A. Spiridon, “Spotforming with an Array of Ultra-wideband Radio Transmitters”, IEEE Conference on Ultra Wideband Systems and Technologies, 16–19 Nov. 2003.

    Google Scholar 

  7. R. Bose, L. Dua, “Spotforming for Ultra Wide band communications using smart antenna systems”, First European Conference on Antennas and Propagation, 2006. EuCAP, 6–10 Nov. 2006.

    Google Scholar 

  8. Z. N.Chen, “UWB antennas: Design and application,”6th International Conf. on Information, Comm. & Signal Proc, pp.1-5, 10–13 Dec. 2007.

    Google Scholar 

  9. http://www.ece.uiuc.edu/about/history/antenna/photos.html.

  10. H. Schantz, The Art and Science of UWB Antennas, Artech House, 2005.

    Google Scholar 

  11. Wiesbeck,W., Adamiuk,G., “Antennas for UWB-Systems,” 2nd International ITG Conference on Antennas, pp.67-71, 28–30 March 2007.

    Google Scholar 

  12. Antennas for portable devices, Zhi Ning Chen, John Wiley & Sons, 2007.

    Google Scholar 

  13. L.J. Chu, “Physical limitations of omni-directional antennas,” J. Appl. Physics, vol. 19, pp. 1163–1175, 1948.

    Article  Google Scholar 

  14. S. Hu, C. L. Law; W. Dou, “Petaloid antenna for passive UWB-RFID tags,” Electronics Letters, vol.43, no.22, Oct. 25 2007.

    Google Scholar 

  15. Seong-Youp Suh, W. L. Stutzman, W. A. Davis, “A New Ultrawideband Printed Monpole Antenna: The Planar Inverted Cone Antenna (PICA)”, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, May 2004, pp. 1361–1365.

    Google Scholar 

  16. Seok H. Choi, Jong K. Park, Sun K. Kim, Jae Y. Park, “A new Ultra-Wideband Antenna for UWB Applications”, Microwave and Optical Technology Letters, Vol. 40. 2004, pp. 399–401.

    Google Scholar 

  17. P. Salonen, Y. Rahmat-Samii, H. Hurme, M. Kivikoski, “Effect of conductive material on wearable antenna performance: a case study of WLAN antennas,” IEEE Antennas and Propagation Society International Symposium, vol.1, no., pp. 455–458 Vol.1, June 2004.

    Google Scholar 

  18. Y. Kim, D.H. Kwon, “CPW-fed planar ultra wideband antenna having a frequency band notch function”, Electronics Letters, Vol. 40 No. 7. April 2004, pp. 403–405.

    Article  Google Scholar 

  19. C. Hertleer, H. Rogier, L. Van Langenhove, “A textile antenna for protective clothing,” IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, pp. 44–46, April 2007.

    Google Scholar 

  20. H.J. Visser, A.C.F. Reniers, “Textile Antennas, a Practical Approach,” The Second European Conference on Antennas and Propagation, pp.1-8, Nov. 2007.

    Google Scholar 

  21. J.G. Santas, A. Alomainy, Yang Hao, “Textile Antennas for On-Body Communications: Techniques and Properties,” The Second European Conference on Antennas and Propagation. pp. 1–4, Nov. 2007.

    Google Scholar 

  22. A. Tronquo, H. Rogier, C. Hertleer,, L. Van Langenhove, “Robust planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band,” Electronics Letters, vol.42, no.3, pp. 142–143, Feb. 2006.

    Google Scholar 

  23. P. Salonen, Y. Rahmat-Samii, “Textile Antennas: Effects of Antenna Bending on Input Matching and Impedance Bandwidth,” IEEE Aerospace and Electronic Systems Magazine,, vol.22, no.12, pp. 18–22, Dec. 2007.

    Article  Google Scholar 

  24. Pekka Salonen, Mikko Keskilammi, “SoftWear Antenna,” IEEE Military Communications Conference, pp. 1–6, Nov. 2008.

    Google Scholar 

  25. M. Klemm, G. Troester, “Textile UWB antennas for wireless body area networks”, IEEE Transactions on Antennas and Propagation, vol. 54, no. 11, Nov. 2006.

    Google Scholar 

  26. D. M. Pozar, Microwave Engineering, Wiley, New York, 2005, third edition, Chapter 5.

    Google Scholar 

  27. R.Ludwig, G.Bogdanov, RF Circuit Design Theory and Applications, Pearson Prentice Hall, New Jersey, 2009.

    Google Scholar 

  28. V. Iyer, S. Makarov, D.Harty, F. Nekoogar, and R. Ludwig, “A lumped circuit for wideband impedance matching of a non-resonant, short dipole or monopole antenna,” IEEE Trans. Antennas and Propagation, conditional acceptance for publication.

    Google Scholar 

  29. Shamim, A.; Roy, L.; Fong, N.; Tarr, N.G., “24 GHz On-Chip Antennas and Balun on Bulk Si for Air Transmission,” IEEE Transactions on Antennas and Propagation,vol.56, no.2, pp. 303–311, Feb. 2008.

    Google Scholar 

  30. Kulkarni, V.V.; Muqsith, M.; Niitsu, K.; Ishikuro, H.; Kuroda, T., “A 750 Mb/s, 12 pJ/b, 6–10 GHz CMOS IR-UWB Transmitter With Embedded On-Chip Antenna,” IEEE Journal of Solid-State Circuits, vol.44, no.2, pp.394–403, Feb. 2009.

    Article  Google Scholar 

  31. Zhang, Y.P.; Sun, M.; Lin, W., “Novel Antenna-in-Package Design in LTCC for Single-Chip RF Transceivers,” IEEE Transactions on Antennas and Propagation vol.56, no.7, pp. 2079–2088, July 2008.

    Article  Google Scholar 

  32. Sun, M.; Zhang, Y.P.; Lu, Y.L., “ Ultra-wideband Integrated Circuit Package Antenna in LTCC Technology”, Proceedings of Asia Pacific Microwave Conference, Dec. 2006.

    Article  Google Scholar 

Bibliography

  • Second Thoughts on Radio Theory by ‘Cathode Ray’, Wireless World 1955.

    Google Scholar 

  • Why an Antenna Radiates, Kenneth MaCleish, W7TX, QST, Nov 1992.

    Google Scholar 

  • The History of Displacement Current Catt, Walton and Davidson. <http://www.electromagnetism.demon.co.uk/z014.htm>

  • Kulkarni, V.V.; Muqsith, M.; Niitsu, K.; Ishikuro, H.; Kuroda, T., “A 750 Mb/s, 12 pJ/b, 6–10 GHz CMOS IR-UWB Transmitter With Embedded On-Chip Antenna,” Solid-State Circuits, IEEE Journal of, vol.44, no.2, pp. 394-403, Feb. 2009.

    Google Scholar 

  • Sun, M.; Zhang, Y.P.; Lu, Y.L., “Ultra-wideband integrated circuit package antenna in LTCC technology,” Asia-Pacific Microwave Conference, pp. 697–700, 12–15 Dec. 2006.

    Google Scholar 

  • Paulino, N, “Design of a Spiral-Mode Microstrip Antenna and Matching Circuitry for Ultra-Wide-Band Receivers,” IEEE International Symposium on Circuits and Systems, vol. 3, 2002.

    Google Scholar 

  • Liu, Bosui, A.M. Ferendeci, “Broadband Spiral Antennas with Thin Dielectric Substrates”, IEEE Radio and Wireless Conference, 2002 (RAWCON 2002), August 2002.

    Google Scholar 

  • Asfar, M.N., Wang, Yong, Hanvi, D., “A New Wideband Cavity-Backed Spiral Antenna”, IEEE Antennas and Propagation Society International Symposium, Vol. 4, July 2001.

    Google Scholar 

  • Thaysen, J., Jakobsen, K.B., Appel-Hansen, J., “Characterization and Optimization of a Coplanar Waveguide Fed Logarithmic Spiral Antenna”, IEEE Antennas and Propagation for Wireless Communications Conference, November 2000.

    Google Scholar 

  • K. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press Inc., 1993.

    Google Scholar 

  • J. Want, V. Tripp, “Design of Multioctave Spiral-Mode Microstrip Antennas”, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, March 1991.

    Google Scholar 

  • G. Kumar, K.P. Ray, Broadband Microstrip Antennas, Artech House, Inc., Boston, 2003.

    Google Scholar 

  • Agrawall N. P.,Kumar G.,Ray. K.P., “Wideband planar monopole antennas”, IEEE Transactions on Antennas and Propagation, vol. AP-46(2),pp. 294–295,1998.

    Google Scholar 

  • P. J. Gibson, “The Vivaldi Aerial,” in Proc. 9th Eur. Microwave Conf., Brighton, U.K., Sept. 1979, pp. 101–105.

    Google Scholar 

  • Babakhani, A.; Xiang Guan; Komijani, A.; Natarajan, A.; Hajimiri, A., “A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas,” Solid-State Circuits, IEEE Journal of, vol.41, no.12, pp. 2795–2806, Dec. 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Nekoogar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nekoogar, F., Dowla, F. (2011). Antenna Design for Ultra-wideband Passive RFID Systems. In: Ultra-Wideband Radio Frequency Identification Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9701-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9701-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9700-5

  • Online ISBN: 978-1-4419-9701-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics