Skip to main content

A New Future in Brain Preconditioning Based on Nutraceuticals: A Focus on α-Linolenic Omega-3 Fatty Acid for Stroke Protection

  • Chapter
  • First Online:
Innate Tolerance in the CNS

Abstract

Stroke is a major cause of disability and death due to a high incidence rate, the severe and heterogeneous nature of the insult, poor recovery, and a paucity of treatments. The only currently clinically approved treatment is recombinant tissue plasminogen activator to restore cerebral blood flow, but eligibility requirements restrict this treatment to approximately 5 % of patients. Unfortunately, therapeutics designed to provide direct neuroprotection, by blocking the neurotoxic ischemic signaling cascade, as identified in numerous preclinical studies, failed in clinical trials. This failure in translation from experimental models to clinical trials suggests that defining criteria required for neuroprotection may have been too narrow in focus. Given the ineffectiveness of monotherapeutic strategies which target one cell type (neurons) and usually one signaling target, neuroprotection may only be achieved via therapeutics which are combinatorial in nature, targeting multiple cell types – the neurovascular unit – as well as multiple time-dependent neurotoxic mechanisms. Such a comprehensive approach sets more stringent standards but should ultimately yield the “best-in-class” therapeutic required to provide clinically relevant neuroprotection.

Preconditioning of the brain is a strong candidate to satisfy these more stringent criteria required to produce a “best-in-class” therapeutic. Preconditioning elicits complex endogenous responses in the neurovascular unit that act by pleiotropic mechanisms to block death pathways, promote survival pathways, and increase resistance. However, potential clinical implementation of preconditioning via chemicals faces challenges, such as potential toxicity, efficacy, and penetration through the blood-brain barrier; its major limitation is the requirement for administration before a stroke, which places a ceiling on the degree to which preconditioning in the clinic may ever be achieved. To address these issues, we introduce a novel concept in preconditioning to combat stroke, which we term nutraceutical preconditioning, which is preconditioning achieved through supplementation of an essential item in diet.

Natural/endogenous compounds such as the omega-3 polyunsaturated fatty acid, alpha-linolenic acid (ALA), represent very promising candidates in this novel concept of achieving preconditioning-driven neuroprotection via dietary supplementation of this nutraceutical. Conventionally, dietary supplementation has been considered as a means to reduce risk factors and the frequency of stroke, but not stroke severity. The pleiotric ability of ALA to trigger responses that are multicellular, mechanistically diverse, and with a wide temporal range mirrors those responses typically elicited by preconditioning, resulting in neuronal protection, stimulation of neuroplasticity, and brain artery vasodilation. In addition, ALA supplementation by modification of the daily diet prevented middle cerebral artery occlusion-induced mortality and cerebral damage. This result suggests that dietary supplementation also alleviates postischemic damage, extending its actions beyond simply reducing stroke frequency. Inducing brain preconditioning through ingestion of omega-3 prophylactically in diet may circumvent the requirement for preemptive application and drug delivery to the brain. This novel concept of nutraceutical preconditioning through dietary supplementation may not be restricted to omega-3 PUFAs such as ALA but may in fact extend to other existing or novel nutraceuticals. Ultimately, the future of preconditioning may largely depend not only upon its successful translation to the clinical arena but also to daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CL, Bayraktutan U (2008) Risk factors for ischaemic stroke. Int J Stroke 3:105–116

    Article  PubMed  Google Scholar 

  • Barone FC (2009) Ischemic stroke intervention requires mixed cellular protection of the penumbra. Curr Opin Investig Drugs 10:220–223

    PubMed  Google Scholar 

  • Barone FC (2010) Post-stroke pharmacological intervention: promoting brain recovery from injury in the future. Neuropharmacology 59:650–653

    Article  PubMed  CAS  Google Scholar 

  • Bas O, Songur A, Sahin O et al (2007) The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int 50:548–554

    Article  PubMed  CAS  Google Scholar 

  • Bennett CN, Horrobin DF (2000) Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: an update. Prostaglandins Leukot Essent Fatty Acids 63:47–59

    Article  PubMed  CAS  Google Scholar 

  • Black KL, Hsu S, Radin NS, Hoff JT (1984) Effect of intravenous eicosapentaenoic acid on cerebral blood flow, edema and brain prostaglandins in ischemic gerbils. Prostaglandins 28:545–556

    PubMed  CAS  Google Scholar 

  • Blondeau N (2011) a-linolenic omega-3 fatty acid for stroke protection: from brain preconditioning paradigm to nutrition. OCL 18(5):271–278. doi:10.1684/ocl.2011.0389

    Google Scholar 

  • Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M (2000) K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100:465–474

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci 21:4668–4677

    PubMed  CAS  Google Scholar 

  • Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C (2002a) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22:821–834

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2002b) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109:231–241

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Petrault O, Manta S et al (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Nguemeni C, Debruyne DN et al (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34:2548–2559

    Article  PubMed  CAS  Google Scholar 

  • Bromfield E, Dworetzky B, Hurwitz S et al (2008) A randomized trial of polyunsaturated fatty acids for refractory epilepsy. Epilepsy Behav 12:187–190

    Article  PubMed  Google Scholar 

  • Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71:327S–330S

    PubMed  CAS  Google Scholar 

  • Burr GO (1981) The essential fatty acids fifty years ago. Prog Lipid Res 20:xxvii–xxix

    Article  PubMed  CAS  Google Scholar 

  • Cansev M, Wurtman RJ, Sakamoto T, Ulus IH (2008) Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement 4:S153–S168

    Article  PubMed  CAS  Google Scholar 

  • Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW (1980) Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum Dev 4:131–138

    Article  PubMed  CAS  Google Scholar 

  • del Zoppo GJ (2009) Relationship of neurovascular elements to neuron injury during ischemia. Cerebrovasc Dis 27(Suppl 1):65–76

    Article  PubMed  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    Article  PubMed  CAS  Google Scholar 

  • Emsley R, Myburgh C, Oosthuizen P, van Rensburg SJ (2002) Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry 159:1596–1598

    Article  PubMed  Google Scholar 

  • Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    Article  PubMed  CAS  Google Scholar 

  • Fenton WS, Hibbeln J, Knable M (2000) Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8–21

    Article  PubMed  CAS  Google Scholar 

  • Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M (2001) A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry 158:2071–2074

    Article  PubMed  CAS  Google Scholar 

  • Fernandes JS, Mori MA, Ekuni R, Oliveira RM, Milani H (2008) Long-term treatment with fish oil prevents memory impairments but not hippocampal damage in rats subjected to transient, global cerebral ischemia. Nutr Res 28:798–808

    Article  PubMed  CAS  Google Scholar 

  • Fisher M (2003) Recommendations for advancing development of acute stroke therapies: Stroke Therapy Academic Industry Roundtable 3. Stroke 34:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Feuerstein G, Howells DW et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250

    Article  PubMed  Google Scholar 

  • Fonarow GC, Smith EE, Saver JL et al (2011) Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation 123:750–758

    Article  PubMed  CAS  Google Scholar 

  • Frangou S, Lewis M, McCrone P (2006) Efficacy of ethyl-eicosapentaenoic acid in bipolar depression: randomised double-blind placebo-controlled study. Br J Psychiatry 188:46–50

    Article  PubMed  Google Scholar 

  • Gamoh S, Hashimoto M, Sugioka K et al (1999) Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 93:237–241

    Article  PubMed  CAS  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  PubMed  CAS  Google Scholar 

  • Harris WS (1997) n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 65:1645S–1654S

    PubMed  CAS  Google Scholar 

  • Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M (2006) Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 137:241–251

    Article  PubMed  CAS  Google Scholar 

  • Hibbeln JR, Salem N Jr (1995) Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 62:1–9

    PubMed  CAS  Google Scholar 

  • Holman RT (1964) Nutritional and metabolic interrelationships between fatty acids. Fed Proc 23:1062–1067

    PubMed  CAS  Google Scholar 

  • Holman RT, Johnson SB, Hatch TF (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35:617–623

    PubMed  CAS  Google Scholar 

  • Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hwang D (2000) Fatty acids and immune responses–a new perspective in searching for clues to mechanism. Annu Rev Nutr 20:431–456

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  • Jonas S, Ayigari V, Viera D, Waterman P (1999) Neuroprotection against cerebral ischemia. A review of animal studies and correlation with human trial results. Ann N Y Acad Sci 890:2–3

    Article  PubMed  CAS  Google Scholar 

  • Jump DB (2002) The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 277:8755–8758

    Article  PubMed  CAS  Google Scholar 

  • Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15:7792–7814

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M et al (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  • Klenk E, Mohrhauer H (1960) Studies on the metabolism of polyenoic fatty acids in the rat. Hoppe Seylers Z Physiol Chem 320:218–232

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  PubMed  CAS  Google Scholar 

  • Lees KR, Bluhmki E, von Kummer R et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375:1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793–F801

    PubMed  CAS  Google Scholar 

  • Lesperance F, Frasure-Smith N, St-Andre E, Turecki G, Lesperance P, Wisniewski SR (2011) The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry 72(8):1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sattler R, Yang EJ et al (2011) Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology 60:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  • Lo EH (2008) Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol 153(Suppl 1):S396–S405

    PubMed  CAS  Google Scholar 

  • Lo EH, Rosenberg GA (2009) The neurovascular unit in health and disease: introduction. Stroke 40:S2–S3

    Article  PubMed  Google Scholar 

  • Mahadik SP, Mukherjee S, Horrobin DF, Jenkins K, Correnti EE, Scheffer RE (1996) Plasma membrane phospholipid fatty acid composition of cultured skin fibroblasts from schizophrenic patients: comparison with bipolar patients and normal subjects. Psychiatry Res 63:133–142

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz M (1981) Effect of dietary trans fatty acids on the delta 5, delta 6 and delta 9 desaturases of rat liver microsomes in vivo. Acta Biol Med Ger 40:1699–1705

    PubMed  CAS  Google Scholar 

  • Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, Puryear LJ (2003) A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry 160:996–998

    Article  PubMed  Google Scholar 

  • Marcel YL, Christiansen K, Holman RT (1968) The preferred metabolic pathway from linoleic acid to arachidonic acid in vitro. Biochim Biophys Acta 164:25–34

    Article  PubMed  CAS  Google Scholar 

  • Martin A (2001) The “apports nutritionnels conseilles (ANC)” for the French population. Reprod Nutr Dev 41:119–128

    Article  PubMed  CAS  Google Scholar 

  • Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542

    PubMed  CAS  Google Scholar 

  • Michael-Titus AT (2007) Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids 77:295–300

    Article  PubMed  CAS  Google Scholar 

  • Minnerup J, Schabitz WR (2009) Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics 6:43–52

    Article  PubMed  CAS  Google Scholar 

  • Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 56:518–524

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Evans DA, Bienias JL et al (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940–946

    Article  PubMed  Google Scholar 

  • Moskowitz MA (2010) Brain protection: maybe yes, maybe no. Stroke 41:S85–S86

    Article  PubMed  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  PubMed  CAS  Google Scholar 

  • Nemets B, Stahl Z, Belmaker RH (2002) Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 159:477–479

    Article  PubMed  Google Scholar 

  • Nguemeni C, Delplanque B, Rovere C et al (2010) Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 61:226–233

    Article  PubMed  CAS  Google Scholar 

  • Nordvik I, Myhr KM, Nyland H, Bjerve KS (2000) Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol Scand 102:143–149

    Article  PubMed  CAS  Google Scholar 

  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477

    Article  PubMed  CAS  Google Scholar 

  • O’Duffy AE, Bordelon YM, McLaughlin B (2007) Killer proteases and little strokes–how the things that do not kill you make you stronger. J Cereb Blood Flow Metab 27:655–668

    PubMed  Google Scholar 

  • Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Amamoto T, Tomonaga M et al (1996) The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience 71:17–25

    Article  PubMed  CAS  Google Scholar 

  • Ozen OA, Cosar M, Sahin O et al (2008) The protective effect of fish n-3 fatty acids on cerebral ischemia in rat prefrontal cortex. Neurol Sci 29:147–152

    Article  PubMed  Google Scholar 

  • Peet M, Horrobin DF (2002a) A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res 36:7–18

    Article  PubMed  Google Scholar 

  • Peet M, Horrobin DF (2002b) A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 59:913–919

    Article  PubMed  CAS  Google Scholar 

  • Peet M, Stokes C (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49:243–251

    Article  PubMed  CAS  Google Scholar 

  • Plamondon H, Roberge MC (2008) Dietary PUFA supplements reduce memory deficits but not CA1 ischemic injury in rats. Physiol Behav 95:492–500

    Article  PubMed  CAS  Google Scholar 

  • Plamondon H, Blondeau N, Heurteaux C, Lazdunski M (1999) Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 19:1296–1308

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  • Relton JK, Strijbos PJ, Cooper AL, Rothwell NJ (1993) Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Res Bull 32:223–226

    Article  PubMed  CAS  Google Scholar 

  • Rocha Araujo DM, Vilarim MM, Nardi AE (2010) What is the effectiveness of the use of polyunsaturated fatty acid omega-3 in the treatment of depression? Expert Rev Neurother 10:1117–1129

    Article  PubMed  Google Scholar 

  • Roche HM (1999) Unsaturated fatty acids. Proc Nutr Soc 58:397–401

    Article  PubMed  CAS  Google Scholar 

  • Rosamond W, Flegal K, Furie K et al (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146

    Article  PubMed  Google Scholar 

  • Rudin DO (1981) The major psychoses and neuroses as omega-3 essential fatty acid deficiency syndrome: substrate pellagra. Biol Psychiatry 16:837–850

    PubMed  CAS  Google Scholar 

  • Rudin DO (1982) The dominant diseases of modernized societies as omega-3 essential fatty acid deficiency syndrome: substrate beriberi. Med Hypotheses 8:17–47

    Article  PubMed  CAS  Google Scholar 

  • Schlanger S, Shinitzky M, Yam D (2002) Diet enriched with omega-3 fatty acids alleviates convulsion symptoms in epilepsy patients. Epilepsia 43:103–104

    Article  PubMed  CAS  Google Scholar 

  • Soderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425

    Article  PubMed  CAS  Google Scholar 

  • Spector AA (1999) Essentiality of fatty acids. Lipids 34(Suppl):S1–S3

    Article  PubMed  CAS  Google Scholar 

  • Spirer Z, Koren L, Finkelstein A, Jurgenson U (1994) Prevention of febrile seizures by dietary supplementation with N-3 polyunsaturated fatty acids. Med Hypotheses 43:43–45

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Zhang W, Peck L et al (2003) EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids 38:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Storlien LH, Hulbert AJ, Else PL (1998) Polyunsaturated fatty acids, membrane function and metabolic diseases such as diabetes and obesity. Curr Opin Clin Nutr Metab Care 1:559–563

    Article  PubMed  CAS  Google Scholar 

  • Su KP, Huang SY, Chiu CC, Shen WW (2003) Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 13:267–271

    Article  PubMed  CAS  Google Scholar 

  • Tauskela JS, Blondeau N (2009) In: Schaller BJ (ed) Ischemic tolerance of the brain, Research Signpost. Research Signpost, Trivandrum, pp 85–135

    Google Scholar 

  • Tauskela JS, Gendron T, Morley P (2004) In: Schaller BJ (ed) Cerebral ischemic tolerance. Nova Science Publishers Inc., New York, pp 45–54

    Google Scholar 

  • Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  PubMed  CAS  Google Scholar 

  • Voskuyl RA, Vreugdenhil M, Kang JX, Leaf A (1998) Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharmacol 341:145–152

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao X, Mao ZY, Wang XM, Liu ZL (2003) Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14:2457–2461

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li M, Wu WK, Tan HM, Geng DF (2008) Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther 22:443–452

    Article  PubMed  CAS  Google Scholar 

  • Weih M, Kallenberg K, Bergk A et al (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30:1851–1854

    Article  PubMed  CAS  Google Scholar 

  • Wheeler TG, Benolken RM, Anderson RE (1975) Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312–1314

    Article  PubMed  CAS  Google Scholar 

  • Yuen AW, Sander JW (2004) Is omega-3 fatty acid deficiency a factor contributing to refractory seizures and SUDEP? A hypothesis. Seizure 13:104–107

    Article  PubMed  Google Scholar 

  • Yuen AW, Sander JW, Fluegel D et al (2005) Omega-3 fatty acid supplementation in patients with chronic epilepsy: a randomized trial. Epilepsy Behav 7:253–258

    Article  PubMed  Google Scholar 

  • Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A (2009) The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 56:329–341

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:491–500

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to G.L.N, ONIDOL, the “Fondation de la Recherche Médicale,” and CNRS for their support. Nicolas Blondeau is also grateful to Pr Michel Lazdunski and Dr Catherine Heurteaux for providing the opportunity and their continued support since 1997 to work on omega-3 PUFAs and brain protection. N. Blondeau also wishes to thank Pr Bernadette Delplanque for many helpful discussions. Finally, we thank all our past and present team members who have contributed to the data discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Blondeau Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blondeau, N., Tauskela, J.S. (2013). A New Future in Brain Preconditioning Based on Nutraceuticals: A Focus on α-Linolenic Omega-3 Fatty Acid for Stroke Protection. In: Gidday, J., Perez-Pinzon, M., Zhang, J. (eds) Innate Tolerance in the CNS. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9695-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9695-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9694-7

  • Online ISBN: 978-1-4419-9695-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics