Principal Component Global Analysis of Series of Fluorescence Spectra

  • Wajih Al-Soufi
  • Mercedes Novo
  • Manuel Mosquera
  • Flor Rodríguez-Prieto
Chapter
Part of the Reviews in Fluorescence book series (RFLU, volume 2009)

Abstract

The analysis of series of molecular fluorescence or absorption spectra forms an integral part of innumerable investigations on the physicochemical properties of chemical or biological systems.

In many typical complex applications, such as photochemical systems with multiple interconversion processes in the ground and in the excited states or biochemical ligand binding studies with several possible binding sites, the number of species contributing to the spectral variation is not known a priori. Moreover, in the frequent case of strongly overlapping spectra of the species, their number cannot be estimated by simple inspection of the experimental spectra.

Principal Component Global Analysis (PCGA) is reviewed as an efficient and reliable way to determine how many species contribute to the observed spectral variation, to set up the correct mechanism and to estimate the values of the corresponding model-parameters. PCGA is applied to examples of host-guest interactions with two and three components and to systems showing complex ground and excited-state proton-transfer reactions with corresponding one and two acid-base equilibria.

Keywords

Anisotropy Hydroxyl Titration Polysaccharide Pyridine 

Notes

Acknowledgments

We thank the Spanish Ministry of Education and Science, the European Union ERDF, and the Xunta de Galicia for financial support.

References

  1. 1.
    Al-Soufi W, Novo M, Mosquera M (2001) Principal component global analysis of fluorescence and absorption spectra of 2-(2′-hydroxyphenyl)benzimidazole. Appl Spectrosc 55:630–636CrossRefGoogle Scholar
  2. 2.
    Álvarez-Parrilla E, Al-Soufi W, Ramos Cabrer P, Novo M, Vázquez Tato J (2001) Resolution of the association equilibria of 2-(p-toluidinyl)-naphthalene-6-sulfonate (Tns) with beta-cyclodextrin and a charged derivative. J Phys Chem B 105:5994–6003CrossRefGoogle Scholar
  3. 3.
    Beechem JM, Gratton E, Ameloot M, Knutson JR, Brand L (1991) The global analysis of fluorescence intensity and anisotropy decay data: second-generation theory and programs. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum Press, New York, pp 241–306Google Scholar
  4. 4.
    Bevington PR, Robinson KD (2003) Data reduction and error analysis for the physical sciences. McGraw-Hill Higher Education, USAGoogle Scholar
  5. 5.
    Carrazana J, Reija B, Ramos Cabrer P, Al-Soufi W, Novo M, Vázquez Tato J (2004) Complexation of methyl orange with beta-cyclodextrin: detailed analysis and application to quantification of polymer-bound cyclodextrin. Supramol Chem 16:549–559CrossRefGoogle Scholar
  6. 6.
    Dommelen LV, Boens N, Ameloot M, De Schryver FC, Kowalczyk A (1993) Species-associated spectra and upper and lower bounds on the rate constants of reversible intramolecular two-state excited-state processes with added quencher. global compartmental analysis of the fluorescence decay surface. J Phys Chem 97:11738–11753CrossRefGoogle Scholar
  7. 7.
    Draper NR, Smith H (1998) Applied regression analysis. Wiley, New YorkGoogle Scholar
  8. 8.
    Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression. I. Biometrika 37:409PubMedGoogle Scholar
  9. 9.
    Dyson RM, Kaderli S, Lawrance GA, Maeder M, Zuberbühler AD (1997) Second order global analysis: the evaluation of series of spectrophotometric titrations for improved determination of equilibrium constants. Anal Chim Acta 353:381–393CrossRefGoogle Scholar
  10. 10.
    Hamilton JC, Gemperline PJ (1990) Mixture analysis using factor analysis. II: self-modeling curve resolution. J Chemom 4:1–13CrossRefGoogle Scholar
  11. 11.
    Johnson ML (2000) Parameter correlations while curve fitting. Methods Enzymol 321:424–446PubMedCrossRefGoogle Scholar
  12. 12.
    Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  13. 13.
    Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem Phys Lett 102:501–507CrossRefGoogle Scholar
  14. 14.
    Lawton WH, Sylvestre EA (1971) Elimination of linear parameters in nonlinear regression. Technometrics 13:461–467CrossRefGoogle Scholar
  15. 15.
    Lezcano M, Al-Soufi W, Novo M, Rodríguez-Núńez E, Vázquez Tato J (2002) Complexation of several benzimidazole-type fungicides with α- and β-cyclodextrins. J Agric Food Chem 50:108–112PubMedCrossRefGoogle Scholar
  16. 16.
    Malinowski ER (1996) Automatic window factor analysis- a more efficient method for determining concentration profiles from evolutionary spectra. J Chemom 10:273–279CrossRefGoogle Scholar
  17. 17.
    Malinowski ER (2002) Factor analysis in chemistry. Wiley, New YorkGoogle Scholar
  18. 18.
    Mosquera M, Penedo JC, Ríos Rodríguez MC, Rodríguez-Prieto F (1996) Photoinduced inter- and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2′-hydroxyphenyl)benzimidazole: evidence for tautomeric and conformational equilibria in the ground state. J Phys Chem 100:5398–5407CrossRefGoogle Scholar
  19. 19.
    Penedo JC, Ríos Rodríguez MC, García Lema I, Pérez Lustres JL, Mosquera M, Rodríguez-Prieto F (2005) Two competitive routes in the lactim-lactam phototautomerization of a hydroxypyridine derivative cation in water: dissociative mechanism versus water-assisted proton transfer. J Phys Chem A 109:10189–10198PubMedCrossRefGoogle Scholar
  20. 20.
    Penedo JC, Pérez-Lustres JL, Lema Garcia I, Ríos Rodríguez MC, Mosquera M, Rodríguez-Prieto F (2004) Solvent-dependent ground- and excited-state tautomerism in 2-(6′-hydroxy-2′-pyridyl)benzimidazole. J Phys Chem A 108:6117–6126CrossRefGoogle Scholar
  21. 21.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++: the art of scientific computing. Cambridge University Press, New YorkGoogle Scholar
  22. 22.
    Puxty G, Maeder M, Hungerbühler K (2006) Tutorial on the fitting of kinetics models to multivariate spectroscopic measurements with non-linear least-squares regression. Chemom Intell Lab Syst 81:149–164CrossRefGoogle Scholar
  23. 23.
    Reija B, Al-Soufi W, Novo M, Vázquez Tato J (2005) Specific interactions in the inclusion complexes of pyronines Y and B with β-cyclodextrin. J Phys Chem B 109:1364–1370PubMedCrossRefGoogle Scholar
  24. 24.
    Rurack K, Hoffmann K, Al-Soufi W, Resch-Genger U (2002) 2,2′-Bipyridyl-3,3′-diol incorporated into AlPO4-5 crystals and its spectroscopic properties as related to aqueous liquid media. J Phys Chem B 106:9744–9752CrossRefGoogle Scholar
  25. 25.
    Sun Y-P, Sears DF Jr, Saltiel J (1988) Principal component self-modeling analysis applied to conformational equilibration of 1,3-butadiene vapor. UV spectra and thermodynamic parameters of the two conformers. J Am Chem Soc 110:6277–6278PubMedCrossRefGoogle Scholar
  26. 26.
    Sylvestre EA, Lawton WH, Maggio MS (1974) Curve resolution using a postulated chemical reaction. Technometrics 16:353–368CrossRefGoogle Scholar
  27. 27.
    van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta BBA Bioenerg 1657:82–104CrossRefGoogle Scholar
  28. 28.
    Volkov VV (1996) Separation of additive mixture spectra by a self-modeling method. Appl Spectrosc 50:320–326CrossRefGoogle Scholar
  29. 29.
    Windig W (1992) Self-modeling mixture analysis of spectral data with continuous concentration profiles. Chemom Intell Lab Syst 16:1–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wajih Al-Soufi
    • 1
  • Mercedes Novo
    • 1
  • Manuel Mosquera
    • 2
  • Flor Rodríguez-Prieto
    • 2
  1. 1.Departamento de Química Física, Facultade de CienciasUniversidade de Santiago de CompostelaLugoSpain
  2. 2.Departamento de Química Física, Facultade de QuímicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations