Advertisement

Z-Scan Fluorescence Correlation Spectroscopy: A Powerful Tool for Determination of Lateral Diffusion in Biological Systems

Chapter
Part of the Reviews in Fluorescence book series (RFLU, volume 2009)

Abstract

The characterization of the dynamics of biological membranes is a topic which currently grasps a high level of attention. Biological membranes are extremely important as they are required for both protection and communication of eukaryotic cells. They also play a key role for transportation of nutrients into and out of the cell. Recent studies have proved that biological membranes are not homogeneous but are instead composed of microdomains, which complicate the precise determination of lateral diffusion coefficients. Z-scan fluorescence correlation spectroscopy (Z-scan FCS), one of the fluorescence fluctuation methods, is a technique which can be employed to determine lateral diffusion coefficients of membrane lipids and also membrane-associated molecules. Moreover, when Z-scan FCS is used in combination with Wawrezinieck diffusion law, lipid rafts in heterogeneous membranes can be monitored. This review is focused firstly on the theory of lateral diffusion in biological systems and secondly on FCS, especially Z-scan FCS as a very useful approach for determination of lateral diffusion coefficients in planar systems.

Keywords

Lateral Diffusion Fluorescence Recovery After Photobleaching Fluorescence Correlation Spectroscopy Fluorescent Molecule Detection Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors thank Mr. Philip Yip for his excellent language corrections. This work has been supported by the Grant Agency of the Czech Republic via grants P208/10/1090 (M. Štefl and R. Macháň) and P208/10/0376 (M. Hof).

References

  1. 1.
    Singer SJ, Nicolson GL (1972) Fluid mosaic model of structure of cell-membranes. Science 175(4023):720–731PubMedCrossRefGoogle Scholar
  2. 2.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572PubMedCrossRefGoogle Scholar
  3. 3.
    Lajoie P et al (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185(3):381–385PubMedCrossRefGoogle Scholar
  4. 4.
    Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5(4):213–230PubMedCrossRefGoogle Scholar
  5. 5.
    Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315(17): 2871–2878PubMedCrossRefGoogle Scholar
  6. 6.
    Brian AA, McConnell HM (1984) Allogeneic stimulation of cyto-toxic T-cells by supported planar membranes. Proc Natl Acad Sci USA Biol Sci 81(19):6159–6163CrossRefGoogle Scholar
  7. 7.
    Benes M et al (2004) Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Langmuir 20(23):10129–10137PubMedCrossRefGoogle Scholar
  8. 8.
    Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–312CrossRefGoogle Scholar
  9. 9.
    Bagatolli LA, Parasassi T, Gratton E (2000) Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chem Phys Lipids 105(2):135–147PubMedCrossRefGoogle Scholar
  10. 10.
    Montes LR et al (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93(10):3548–3554PubMedCrossRefGoogle Scholar
  11. 11.
    Pott T, Bouvrais H, Meleard P (2008) Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids 154(2):115–119PubMedCrossRefGoogle Scholar
  12. 12.
    Adkins EM et al (2007) Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Biochemistry 46(37):10484–10497PubMedCrossRefGoogle Scholar
  13. 13.
    Huang ZP, Pearce KH, Thompson NL (1992) Effect of bovine prothrombin fragment-1 on the translational diffusion of phospholipids in langmuir-blodgett monolayers. Biochim Biophys Acta 1112(2):259–265PubMedCrossRefGoogle Scholar
  14. 14.
    Ladha S, Mackie AR, Clark DC (1994) Cheek cell-membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy. J Membr Biol 142(2):223–228PubMedGoogle Scholar
  15. 15.
    Gordon GW et al (1995) Analysis of simulated and experimental fluorescence recovery after photobleaching: data for 2 diffusing components. Biophys J 68(3):766–778PubMedCrossRefGoogle Scholar
  16. 16.
    Sheetz MP (1993) Glycoprotein motility and dynamic domains in fluid plasma-membranes. Annu Rev Biophys Biomol Struct 22:417–431PubMedCrossRefGoogle Scholar
  17. 17.
    Hong QA, Sheetz MP, Elson EL (1991) Single-particle tracking: analysis of diffusion and flow in 2-dimensional systems. Biophys J 60(4):910–921CrossRefGoogle Scholar
  18. 18.
    Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72(4):1744–1753PubMedCrossRefGoogle Scholar
  19. 19.
    Martin DS, Forstner MB, Kas JA (2002) Apparent subdiffusion inherent to single particle tracking. Biophys J 83(4):2109–2117PubMedCrossRefGoogle Scholar
  20. 20.
    Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399PubMedCrossRefGoogle Scholar
  21. 21.
    Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49(3):141–164PubMedCrossRefGoogle Scholar
  22. 22.
    Jameson DM, Ross JA, Albanesi JP (2009) Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics. Biophys Rev 1:105–118PubMedCrossRefGoogle Scholar
  23. 23.
    Brown CM et al (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc Oxf 229(1):78–91CrossRefGoogle Scholar
  24. 24.
    Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96(5):1999–2008PubMedCrossRefGoogle Scholar
  25. 25.
    Garcia-Saez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122PubMedCrossRefGoogle Scholar
  26. 26.
    Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497PubMedCrossRefGoogle Scholar
  27. 27.
    Ohsugi Y et al (2006) Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys J 91(9):3456–3464PubMedCrossRefGoogle Scholar
  28. 28.
    Digman MA et al (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327PubMedCrossRefGoogle Scholar
  29. 29.
    Elson E, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  30. 30.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers 13:29–61PubMedCrossRefGoogle Scholar
  31. 31.
    Benda A et al (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19(10):4120–4126CrossRefGoogle Scholar
  32. 32.
    Dertinger T et al (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8(3):433–443PubMedCrossRefGoogle Scholar
  33. 33.
    Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448PubMedCrossRefGoogle Scholar
  34. 34.
    Ratto TV, Longo ML (2003) Anomalous subdiffusion in heterogeneous lipid bilayers. Langmuir 19(5):1788–1793CrossRefGoogle Scholar
  35. 35.
    Saxton MJ (1989) Lateral diffusion in an archipelago: distance dependence of the diffusion-coefficient. Biophys J 56(3):615–622PubMedCrossRefGoogle Scholar
  36. 36.
    Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid-phases of dimyristoylphosphatidylcholine cholesterol lipid bilayers: a free-volume analysis. Biochemistry 31(29):6739–6747PubMedCrossRefGoogle Scholar
  37. 37.
    Vaz WLC, Clegg RM, Hallmann D (1985) Translational diffusion of lipids in liquid-crystalline phase phosphatidylcholine multibilayers: a comparison of experiment with theory. Biochemistry 24(3):781–786PubMedCrossRefGoogle Scholar
  38. 38.
    Vaz WLC, Goodsaid-Zalduondo F, Jacobson K (1984) Lateral diffusion of lipids and proteins in bilayer-membranes. FEBS Lett 174(2):199–207CrossRefGoogle Scholar
  39. 39.
    Falck E et al (2004) Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87(2):1076–1091PubMedCrossRefGoogle Scholar
  40. 40.
    Liu CH, Paprica A, Petersen NO (1997) Effects of size of macrocyclic polyamides on their rate of diffusion in model membranes. Biophys J 73(5):2580–2587PubMedCrossRefGoogle Scholar
  41. 41.
    Petrov EP, Schwille P (2008) Translational diffusion in lipid membranes beyond the Saffman–Delbruck approximation. Biophys J 94(5):L41–L43PubMedCrossRefGoogle Scholar
  42. 42.
    Hughes BD, Pailthorpe BA, White LR (1981) The translational and rotational drag on a cylinder moving in a membrane. J Fluid Mech 110:349–372CrossRefGoogle Scholar
  43. 43.
    Saffman PG, Delbruck M (1975) Brownian-motion in biological-membranes. Proc Natl Acad Sci USA 72(8):3111–3113PubMedCrossRefGoogle Scholar
  44. 44.
    Saffman PG (1976) Brownian-motion in thin sheets of viscous-fluid. J Fluid Mech 73:593–602CrossRefGoogle Scholar
  45. 45.
    Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2):1073–1080PubMedCrossRefGoogle Scholar
  46. 46.
    Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182PubMedCrossRefGoogle Scholar
  47. 47.
    Saxton MJ (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70(3):250–1262PubMedCrossRefGoogle Scholar
  48. 48.
    Saxton MJ (2007) A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys J 92(4):1178–1191PubMedCrossRefGoogle Scholar
  49. 49.
    Saxton MJ (2001) Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81(4):2226–2240PubMedCrossRefGoogle Scholar
  50. 50.
    Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte-Carlo study. Biophys J 66(2):394–401PubMedCrossRefGoogle Scholar
  51. 51.
    Deverall MA et al (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88(3):1875–1886PubMedCrossRefGoogle Scholar
  52. 52.
    Saxton MJ (1995) Single-particle tracking: effects of corrals. Biophys J 69(2):389–398PubMedCrossRefGoogle Scholar
  53. 53.
    Wenger J et al (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92(3):913–919PubMedCrossRefGoogle Scholar
  54. 54.
    Saxton MJ (1990) Lateral diffusion in a mixture of mobile and immobile particles: a Monte-Carlo study. Biophys J 58(5):1303–1306PubMedCrossRefGoogle Scholar
  55. 55.
    Enderlein J et al (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6(11):2324–2336PubMedCrossRefGoogle Scholar
  56. 56.
    Enderlein J et al (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5(2):155–161PubMedCrossRefGoogle Scholar
  57. 57.
    Rigler R (1995) Fluorescence correlations, single-molecule detection and large number screening – applications in biotechnology. J Biotechnol 41(2–3):177–186PubMedCrossRefGoogle Scholar
  58. 58.
    Thompson NL (1991) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum, New York, pp 337–378Google Scholar
  59. 59.
    Hess ST et al (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3):697–705PubMedCrossRefGoogle Scholar
  60. 60.
    Schwille P, Oehlenschlager F, Walter NG (1996) Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35(31):10182–10193PubMedCrossRefGoogle Scholar
  61. 61.
    Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet-states in solution: a theoretical and experimental-study. J Phys Chem 99(36):13368–13379CrossRefGoogle Scholar
  62. 62.
    Yu L et al (2005) Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: an amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity. Biochim Biophys Acta Biomembr 1716(1):29–39CrossRefGoogle Scholar
  63. 63.
    Donsmark J, Rischel C (2007) Fluorescence correlation spectroscopy at the oil-water interface: hard disk diffusion behavior in dilute beta-lactoglobulin layers precedes monolayer formation. Langmuir 23(12):6614–6623PubMedCrossRefGoogle Scholar
  64. 64.
    Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral-equations. Comput Phys Commun 27(3):213–227CrossRefGoogle Scholar
  65. 65.
    Zhang LF, Granick S (2007) Interleaflet diffusion coupling when polymer adsorbs onto one sole leaflet of a supported phospholipid bilayer. Macromolecules 40(5):1366–1368CrossRefGoogle Scholar
  66. 66.
    Enderlein J et al (2005) Statistical analysis of diffusion coefficient determination by fluorescence correlation spectroscopy. J Fluoresc 15(3):415–422PubMedCrossRefGoogle Scholar
  67. 67.
    Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10(6):1938–1945CrossRefGoogle Scholar
  68. 68.
    Wohland T, Rigler R, Vogel H (2001) The standard deviation in fluorescence correlation spectroscopy. Biophys J 80(6):2987–2999PubMedCrossRefGoogle Scholar
  69. 69.
    Qian H (1990) On the statistics of fluorescence correlation spectroscopy. Biophys Chem 38(1–2):49–57PubMedCrossRefGoogle Scholar
  70. 70.
    Kask P, Gunther R, Axhausen P (1997) Statistical accuracy in fluorescence fluctuation experiments. Eur Biophys J Biophys Lett 25(3):163–169CrossRefGoogle Scholar
  71. 71.
    Schwille P, Heinze KG (2001) Two-photon fluorescence cross-correlation spectroscopy. Chemphyschem 2(5):269–272CrossRefGoogle Scholar
  72. 72.
    Guo L et al (2008) Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. Chemphyschem 9(5):721–728PubMedCrossRefGoogle Scholar
  73. 73.
    Samiee KT et al (2006) Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys J 90(9):3288–3299PubMedCrossRefGoogle Scholar
  74. 74.
    Blom H, Kastrup L, Eggeling C (2006) Fluorescence fluctuation spectroscopy in reduced detection volumes. Curr Pharm Biotechnol 7(1):51–66PubMedCrossRefGoogle Scholar
  75. 75.
    Ringemann C et al (2009) Exploring single-molecule dynamics with fluorescence nanoscopy. New J Phys 11:29CrossRefGoogle Scholar
  76. 76.
    Przybylo M et al (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22(22): 9096–9099PubMedCrossRefGoogle Scholar
  77. 77.
    Benda A et al (2006) Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir 22(23): 9580–9585PubMedCrossRefGoogle Scholar
  78. 78.
    Renner L et al (2008) Supported lipid bilayers on spacious and pH-responsive polymer cushions with varied hydrophilicity. J Phys Chem B 112(20):6373–6378PubMedCrossRefGoogle Scholar
  79. 79.
    Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta Biomembr 1788(1):225–233CrossRefGoogle Scholar
  80. 80.
    Benes M et al (2002) Muscovite (mica) allows the characterisation of supported bilayers by ellipsometry and confocal fluorescence correlation spectroscopy. Biol Chem 383(2):337–341PubMedGoogle Scholar
  81. 81.
    Sachl R et al (2009) A comparative study on ganglioside micelles using electronic energy transfer, fluorescence correlation spectroscopy and light scattering techniques. Phys Chem Chem Phys 11(21):4335–4343PubMedCrossRefGoogle Scholar
  82. 82.
    Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83(4):2300–2317PubMedCrossRefGoogle Scholar
  83. 83.
    Wawrezinieck L et al (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89(6):4029–4042PubMedCrossRefGoogle Scholar
  84. 84.
    Vats K, Kyoung M, Sheets ED (2008) Characterizing the chemical complexity of patterned biomimetic membranes. Biochim Biophys Acta Biomembr 1778(11):2461–2468CrossRefGoogle Scholar
  85. 85.
    Sisan DR et al (2006) Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys J 91(11):4241–4252PubMedCrossRefGoogle Scholar
  86. 86.
    Destainville N (2008) Theory of fluorescence correlation spectroscopy at variable observation area for two-dimensional diffusion on a meshgrid. Soft Matter 4(6):1288–1301CrossRefGoogle Scholar
  87. 87.
    Humpolickova J et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91(3):L23–L25PubMedCrossRefGoogle Scholar
  88. 88.
    Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion and percolation in 2-phase, 2-component lipid bilayers: topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31(31):7198–7210PubMedCrossRefGoogle Scholar
  89. 89.
    Forstner MB et al (2006) Lipid lateral mobility and membrane phase structure modulation by protein binding. J Am Chem Soc 128(47):15221–15227PubMedCrossRefGoogle Scholar
  90. 90.
    Xia W, Thorpe MF (1988) Percolation properties of random ellipses. Phys Rev A 38(5):2650–2656PubMedCrossRefGoogle Scholar
  91. 91.
    Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. Chemphyschem 6(1):164–170PubMedCrossRefGoogle Scholar
  92. 92.
    Petrášek Z, Schwille P (2008) Photobleaching in two-photon scanning fluorescence correlation spectroscopy. Chemphyschem 9(1):147–158PubMedCrossRefGoogle Scholar
  93. 93.
    Widengren J, Rigler R (1996) Mechanism of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4:149–157CrossRefGoogle Scholar
  94. 94.
    Chiantia S et al (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90(12):4500–4508PubMedCrossRefGoogle Scholar
  95. 95.
    Štefl M, Kulakowska A, Hof M (2009) Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by Z-scan fluorescence correlation spectroscopy. Biophys J 97(3):L1–L3CrossRefGoogle Scholar
  96. 96.
    Satsoura D et al (2007) Circumvention of fluorophore photobleaching in fluorescence fluctuation experiments: a beam scanning approach. Chemphyschem 8(6):834–848PubMedCrossRefGoogle Scholar
  97. 97.
    Petersen NO (1984) Diffusion and aggregation in biological-membranes. Can J Biochem Cell Biol 62(11):1158–1166PubMedCrossRefGoogle Scholar
  98. 98.
    Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91(5):1915–1924PubMedCrossRefGoogle Scholar
  99. 99.
    Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B Lasers Opt 73(8):829–837CrossRefGoogle Scholar
  100. 100.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1368–1376CrossRefGoogle Scholar
  101. 101.
    Mutze J, Petrasek Z, Schwille P (2007) Independence of maximum single molecule fluorescence count rate on the temporal and spectral laser pulse width in two-photon FCS. J Fluoresc 17(6):805–810PubMedCrossRefGoogle Scholar
  102. 102.
    Petersen NO (1986) Scanning fluorescence correlation spectroscopy. 1. Theory and simulation of aggregation measurements. Biophys J 49(4):809–815PubMedCrossRefGoogle Scholar
  103. 103.
    Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88(5):3601–3614PubMedCrossRefGoogle Scholar
  104. 104.
    Petersen NO, Johnson DC, Schlesinger MJ (1986) Scanning fluorescence correlation spectroscopy. 2. Application to virus glycoprotein aggregation. Biophys J 49(4):817–820PubMedCrossRefGoogle Scholar
  105. 105.
    Ruan QQ et al (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87(2):1260–1267PubMedCrossRefGoogle Scholar
  106. 106.
    Skinner JP, Chen Y, Muller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89(2):1288–1301PubMedCrossRefGoogle Scholar
  107. 107.
    Weissman M, Schindler H, Feher G (1976) Determination of molecular-weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci USA 73(8):2776–2780PubMedCrossRefGoogle Scholar
  108. 108.
    Berland KM et al (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71(1):410–420PubMedCrossRefGoogle Scholar
  109. 109.
    Petersen NO et al (1993) Quantitation of membrane-receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65(3):1135–1146PubMedCrossRefGoogle Scholar
  110. 110.
    Digman MA et al (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36PubMedCrossRefGoogle Scholar
  111. 111.
    Wiseman PW, Squier JA, Wilso KR (2000) Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application. In: Conchello JA, Cogswell CJ, Wilson T (eds) Three-dimensional and multidimensional microscopy: image acquisition processing, vol VII. SPIE, Bellingham, pp 14–20Google Scholar
  112. 112.
    Semrau S, Schmidt T (2007) Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single-molecule position data. Biophys J 92(2):613–621PubMedCrossRefGoogle Scholar
  113. 113.
    Thompson NL, Steele BL (2007) Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2(4):878–890PubMedCrossRefGoogle Scholar
  114. 114.
    Ries J, Petrov EP, Schwille P (2008) Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence. Biophys J 95(1): 390–399PubMedCrossRefGoogle Scholar
  115. 115.
    Ries J et al (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94(1): 221–229PubMedCrossRefGoogle Scholar
  116. 116.
    Samiee KT et al (2005) Lambda-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophys J 88(3): 2145–2153PubMedCrossRefGoogle Scholar
  117. 117.
    Milon S et al (2003) Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem Phys 288(2–3):171–186CrossRefGoogle Scholar
  118. 118.
    Chiantia S et al (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7(11):2409–2418PubMedCrossRefGoogle Scholar
  119. 119.
    Digman MA, Gratton E (2009) Imaging barriers to diffusion by pair correlation functions. Biophys J 97(2):665–673PubMedCrossRefGoogle Scholar
  120. 120.
    Berland KM (2001) Dual-color two-photon fluorescence correlation spectroscopy. In: Periasamy A, So PTC (eds) Multiphoton microscopy in the biomedical sciences. SPIE, Bellingham, pp 268–278CrossRefGoogle Scholar
  121. 121.
    Swift K, Anderson SN, Matayoshi E (2001) Dual laser fluorescence correlation spectroscopy as a biophysical probe of binding interactions – evaluation of new red-fluorescent dyes. In: Lakowicz JR, Thompson RB (eds) Advances in fluorescence sensing technology, vol V. SPIE, Bellingham, pp 47–58CrossRefGoogle Scholar
  122. 122.
    Bohmer M et al (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353(5–6):439–445CrossRefGoogle Scholar
  123. 123.
    Medina MA, Schwille P (2002) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24(8):758–764PubMedCrossRefGoogle Scholar
  124. 124.
    Rigler R et al (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109PubMedCrossRefGoogle Scholar
  125. 125.
    Sorscher SM, Klein MP (1980) Profile of a focused collimated laser-beam near the focal minimum characterized by fluorescence correlation spectroscopy. Rev Sci Instrum 51(1):98–102CrossRefGoogle Scholar
  126. 126.
    Gielen E et al (2009) On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. Chem Phys Lett 469(1–3):110–114CrossRefGoogle Scholar
  127. 127.
    Miszta A et al (2008) Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers. J Pept Sci 14(4):503–509PubMedCrossRefGoogle Scholar
  128. 128.
    Shenoy S et al (2010) In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs). Soft Matter 6:1263–1274CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.J. Heyrovský Institute of Physical Chemistry v.v.i.Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations