Skip to main content

Magnesium in Acute Brain Injury

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Acute injury to the central nervous system, such as stroke and traumatic brain injury (TBI), is a leading cause of morbidity and mortality, and represents a significant public health issue worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients meaning that severe disability and requirement of long-term rehabilitation are common outcomes. The majority of the damage that occurs following stroke and TBI is initiated by the primary injury and develops over time. Such secondary injury encompasses a number of damaging biochemical and pathophysiological events. However, the delayed nature of such injury provides an opportunity for therapeutic intervention. Indeed, magnesium decline has been identified as a key secondary injury process, one that is associated with significant functional impairment. Magnesium administration has been extensively evaluated in both experimental and clinical stroke and TBI with varied success. This chapter focuses on the role of magnesium in TBI and stroke pathophysiology, with particular emphasis on magnesium as a potential therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisenbrey GA, Corwin E, Catanzarite V (1992) Effect of magnesium sulfate on the vascular actions of norepinephrine and angiotensin II. Am J Perinatol 9:477–480

    PubMed  CAS  Google Scholar 

  • Altura BM, Altura BT (1999) Association of alcohol in brain injury, headaches, and stroke with brain-tissue and serum levels of ionized magnesium: a review of recent findings and mechanisms of action. Alcohol 19:119–130

    PubMed  CAS  Google Scholar 

  • Altura BM, Barbour RL, Dowd TL, Wu F, Altura BT, Gupta RK (1993) Low extracellular magnesium induces intracellular free Mg deficits, ischemia, depletion of high-energy phosphates and cardiac failure in intact working rat hearts: a 31P-NMR study. Biochim Biophys Acta 1182:329–332

    PubMed  CAS  Google Scholar 

  • Arango MF, Bainbridge D (2008) Magnesium for acute traumatic brain injury. Cochrane Database Syst Rev (4):CD005400

    Google Scholar 

  • Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA (1997) Oxidative stress following traumatic brain injury in rats. Surg Neurol 47:575–581, discussion 581-2

    PubMed  CAS  Google Scholar 

  • Bayir A, Ak A, Kara H, Sahin TK (2009) Serum and cerebrospinal fluid magnesium levels, Glasgow Coma Scores, and in-hospital mortality in patients with acute stroke. Biol Trace Elem Res 130:7–12

    PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Blache D, Devaux S, Joubert O, Loreau N, Schneider M, Durand P, Prost M, Gaume V, Adrian M, Laurant P, Berthelot A (2006) Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 41:277–284

    PubMed  CAS  Google Scholar 

  • Blumbergs PC, Reilly PL, Vink R (2008) Trauma. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 733–832

    Google Scholar 

  • Brocard JB (1993) Glutamate induced increases in intracellular free Mg(2+) in clutured cortical neurons. Neuron 11:751–757

    PubMed  CAS  Google Scholar 

  • Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

    PubMed  CAS  Google Scholar 

  • Campbell K, Meloni BP, Knuckey NW (2008a) Combined magnesium and mild hypothermia (35 degrees C) treatment reduces infarct volumes after permanent middle cerebral artery occlusion in the rat at 2 and 4, but not 6 h. Brain Res 1230:258–264

    PubMed  CAS  Google Scholar 

  • Campbell K, Meloni BP, Zhu H, Knuckey NW (2008b) Magnesium treatment and spontaneous mild hypothermia after transient focal cerebral ischemia in the rat. Brain Res Bull 77:320–322

    PubMed  CAS  Google Scholar 

  • Cernak I, Radosevic P, Malicevic Z, Savic J (1995) Experimental magnesium depletion in adult rabbits caused by blast overpressure. Magnes Res 8:249–259

    PubMed  CAS  Google Scholar 

  • Cernak I, Savic VJ, Kotur J, Prokic V, Veljovic M, Grbovic D (2000) Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma 17:53–68

    PubMed  CAS  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    PubMed  CAS  Google Scholar 

  • Chi OZ, Pollak P, Weiss HR (1990) Effects of magnesium sulfate and nifedipine on regional cerebral blood flow during middle cerebral artery ligation in the rat. Arch Int Pharmacodyn Ther 304:196–205

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    PubMed  CAS  Google Scholar 

  • Chung SY, Lin JY, Lin MC, Liu HM, Wang MF, Cheng FC (2004) Synergistic efficacy of magnesium sulfate and FK506 on cerebral ischemia-induced infarct volume in gerbil. Med Sci Monit 10:BR105–BR108

    PubMed  CAS  Google Scholar 

  • Cojocaru IM, Cojocaru M, Burcin C, Atanasiu NA (2007) Serum magnesium in patients with acute ischemic stroke. Rom J Intern Med 45:269–273

    PubMed  CAS  Google Scholar 

  • Cook NL, Van Den Heuvel C, Vink R (2009) Are the transient receptor potential melastatin (TRPM) channels important in magnesium homeostasis following traumatic brain injury? Magnes Res 22:225–234

    PubMed  CAS  Google Scholar 

  • Danton GH, Dietrich WD (2005) Neuroprotection, where are we going? In: Waxman S (ed) From neuroscience to neurology. Elsevier Academic, San Diego

    Google Scholar 

  • Dhandapani SS, Gupta A, Vivekanandhan S, Sharma BS, Mahapatra AK (2008) Randomized controlled trial of magnesium sulphate in severe closed traumatic brain injury. Ind J Neurotrauma 5:27–33

    Google Scholar 

  • Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 29:1388–1398

    PubMed  CAS  Google Scholar 

  • Duley L (2011) Pre-eclampsia, eclampsia, and hypertension. Clin Evid (Online). 2011

    Google Scholar 

  • Ebel H, Gunther T (1980) Magnesium metabolism: a review. J Clin Chem Clin Biochem 18:257–270

    PubMed  CAS  Google Scholar 

  • Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    PubMed  CAS  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    PubMed  CAS  Google Scholar 

  • Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth 83:302–320

    PubMed  CAS  Google Scholar 

  • Feldman Z, Gurevitch B, Artru AA, Oppenheim A, Shohami E, Reichenthal E, Shapira Y (1996) Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 85:131–137

    PubMed  CAS  Google Scholar 

  • Finnie JW, Blumbergs PC (2002) Traumatic brain injury. Vet Pathol 39:679–689

    PubMed  CAS  Google Scholar 

  • Flather M, Pipilis A, Collins R, Budaj A, Hargreaves A, Kolettis T, Jacob A, Millane T, Fitzgerald L, Cedro K et al (1994) Randomized controlled trial of oral captopril, of oral isosorbide mononitrate and of intravenous magnesium sulphate started early in acute myocardial infarction: safety and haemodynamic effects. ISIS-4 (Fourth International Study of Infarct Survival) Pilot Study Investigators. Eur Heart J 15:608–619

    PubMed  CAS  Google Scholar 

  • Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115:4–18

    PubMed  CAS  Google Scholar 

  • Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711

    PubMed  CAS  Google Scholar 

  • Gorelick PB, Ruland S (2004) IMAGES and FAST-MAG: magnesium for acute ischaemic stroke. Lancet Neurol 3:330

    PubMed  Google Scholar 

  • Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59:641–651

    PubMed  CAS  Google Scholar 

  • Hademenos GJ, Massoud TF (1997) Biophysical mechanisms of stroke. Stroke 28:2067–2077

    PubMed  CAS  Google Scholar 

  • Hallak M, Berman RF, Irtenkauf SM, Janusz CA, Cotton DB (1994) Magnesium sulfate treatment decreases N-methyl-d-aspartate receptor binding in the rat brain: an autoradiographic study. J Soc Gynecol Investig 1:25–30

    PubMed  CAS  Google Scholar 

  • Harrison S, Geppetti P (2001) Substance p. Int J Biochem Cell Biol 33:555–576

    PubMed  CAS  Google Scholar 

  • Heath DL, Vink R (1996) Traumatic brain axonal injury produces sustained decline in intracellular free magnesium concentration. Brain Res 738:150–153

    PubMed  CAS  Google Scholar 

  • Heath DL, Vink R (1998) Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotrauma 15:183–189

    PubMed  CAS  Google Scholar 

  • Heath DL, Vink R (1999a) Improved motor outcome in response to magnesium therapy received up to 24 hours after traumatic diffuse axonal brain injury in rats. J Neurosurg 90:504–509

    PubMed  CAS  Google Scholar 

  • Heath DL, Vink R (1999b) Concentration of brain free magnesium following severe brain injury correlates with neurologic motor outcome. J Clin Neurosci 6:505–509

    PubMed  CAS  Google Scholar 

  • Heath DL, Vink R (1999c) Optimization of magnesium therapy after severe diffuse axonal brain injury in rats. J Pharmacol Exp Ther 288:1311–1316

    PubMed  CAS  Google Scholar 

  • Hoane MR, Barth TM (2001) The behavioral and anatomical effects of MgCl2 therapy in an electrolytic lesion model of cortical injury in the rat. Magnes Res 14:51–63

    PubMed  CAS  Google Scholar 

  • Hoane MR, Barth TM (2002) The window of opportunity for administration of magnesium therapy following focal brain injury is 24 h but is task dependent in the rat. Physiol Behav 76:271–280

    PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Rothwell NJ, Hopkins SJ, Nortje J, Carpenter KL, Timofeev I, Al-Rawi PG, Menon DK, Pickard JD (2007) Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 24:1545–1557

    PubMed  Google Scholar 

  • Izumi Y, Roussel S, Pinaud E, Seylaz J (1991) Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 11:1025–1030

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1990) Voltage-dependent block by intracellular Mg2+ of N-methyl-d-aspartate activated channels. Biophys J 57:1085–1090

    PubMed  CAS  Google Scholar 

  • Kemp PA, Gardiner SM, Bennett T, Rubin PC (1993) Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-I, angiotensin II and neuropeptide-Y, but not that caused by NG-nitro-l-arginine methyl ester, in conscious rats. Clin Sci (Lond) 85:175–181

    CAS  Google Scholar 

  • Kinoshita Y, Ueyama T, Senba E, Terada T, Nakai K, Itakura T (2001) Expression of c-fos, heat shock protein 70, neurotrophins, and cyclooxygenase-2 mRNA in response to focal cerebral ischemia/reperfusion in rats and their modification by magnesium sulfate. J Neurotrauma 18:435–445

    PubMed  CAS  Google Scholar 

  • Kontos HA (2001) Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke 32:2712–2716

    PubMed  CAS  Google Scholar 

  • Lampl Y, Geva D, Gilad R, Eshel Y, Ronen L, Sarova-Pinhas I (1998) Cerebrospinal fluid magnesium level as a prognostic factor in ischaemic stroke. J Neurol 245:584–588

    PubMed  CAS  Google Scholar 

  • Lee EJ, Ayoub IA, Harris FB, Hassan M, Ogilvy CS, Maynard KI (1999) Mexiletine and magnesium independently, but not combined, protect against permanent focal cerebral ischemia in Wistar rats. J Neurosci Res 58:442–448

    PubMed  CAS  Google Scholar 

  • Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    PubMed  CAS  Google Scholar 

  • Lin JY, Chung SY, Lin MC, Cheng FC (2002) Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci 71:803–811

    PubMed  CAS  Google Scholar 

  • Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    PubMed  Google Scholar 

  • Malpuech-Brugere C, Nowacki W, Daveau M, Gueux E, Linard C, Rock E, Lebreton J, Mazur A, Rayssiguier Y (2000) Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta 1501:91–98

    PubMed  CAS  Google Scholar 

  • Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 36:2871–2877

    PubMed  CAS  Google Scholar 

  • Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE (1996) Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 85:117–124

    PubMed  CAS  Google Scholar 

  • Maulik D, Qayyum I, Powell SR, Karantza M, Mishra OP, Delivoria-Papadopoulos M (2001) Post-hypoxic magnesium decreases nuclear oxidative damage in the fetal guinea pig brain. Brain Res 890:130–136

    PubMed  CAS  Google Scholar 

  • Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209:243–253

    PubMed  CAS  Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MV (1990) Magnesium reduces N-methyl-d-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett 109:234–238

    PubMed  CAS  Google Scholar 

  • McIntosh TK, Vink R, Yamakami I, Faden AI (1989) Magnesium protects against neurological deficit after brain injury. Brain Res 482:252–260

    PubMed  CAS  Google Scholar 

  • McIntosh TK, Smith DH, Garde E (1996) Therapeutic approaches for the prevention of secondary brain injury. Eur J Anaesthesiol 13:291–309

    PubMed  CAS  Google Scholar 

  • Meloni BP, Zhu H, Knuckey NW (2006) Is magnesium neuroprotective following global and focal cerebral ischaemia? A review of published studies. Magnes Res 19:123–137

    PubMed  CAS  Google Scholar 

  • Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM (1995) Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest 55:671–677

    PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Ortiz S, Molina-Holgado F, Guaza C (2000) Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol 131:152–159

    PubMed  CAS  Google Scholar 

  • Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T (1997) Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 2:133–136

    PubMed  CAS  Google Scholar 

  • Muir KW, Lees KR (1998) Dose optimization of intravenous magnesium sulfate after acute stroke. Stroke 29:918–923

    PubMed  CAS  Google Scholar 

  • Muir KW, Lees KR, Ford I, Davis S (2004) Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): randomised controlled trial. Lancet 363:439–445

    PubMed  CAS  Google Scholar 

  • Regan RF, Jasper E, Guo Y, Panter SS (1998) The effect of magnesium on oxidative neuronal injury in vitro. J Neurochem 70:77–85

    PubMed  CAS  Google Scholar 

  • Reid TR, Torti FM, Ringold GM (1989) Evidence for two mechanisms by which tumor necrosis factor kills cells. J Biol Chem 264:4583–4589

    PubMed  CAS  Google Scholar 

  • Rock E, Astier C, Lab C, Malpuech C, Nowacki W, Gueux E, Mazur A, Rayssiguier Y (1995) Magnesium deficiency in rats induces a rise in plasma nitric oxide. Magnes Res 8:237–242

    PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    PubMed  CAS  Google Scholar 

  • Rothwell N (2003) Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun 17:152–157

    PubMed  Google Scholar 

  • Sakamoto T, Takasu A, Saitoh D, Kaneko N, Yanagawa Y, Okada Y (2005) Ionized magnesium in the cerebrospinal fluid of patients with head injuries. J Trauma 58:1103–1109

    PubMed  CAS  Google Scholar 

  • Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ (1999) Neuroprotective effects of combination therapy with tirilizad and magnesium in rats subjected to reversible focal cerebral ischemia. Neurosurgery 44:163–172

    PubMed  CAS  Google Scholar 

  • Shogi T, Oono H, Nakagawa M, Miyamoto A, Ishiguro S, Nishio A (2002) Effects of a low extracellular magnesium concentration and endotoxin on IL-1beta and TNF-alpha release from, and mRNA levels in, isolated rat alveolar macrophages. Magnes Res 15:147–152

    PubMed  CAS  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    PubMed  CAS  Google Scholar 

  • Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 77:337–354

    PubMed  CAS  Google Scholar 

  • Smith DA, Connick JH, Stone TW (1989) Effect of changing extracellular levels of magnesium on spontaneous activity and glutamate release in the mouse neocortical slice. Br J Pharmacol 97:475–482

    PubMed  CAS  Google Scholar 

  • Smith DH, Okiyama K, Gennarelli TA, McIntosh TK (1993) Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci Lett 157:211–214

    PubMed  CAS  Google Scholar 

  • Smith DH, Cecil KM, Meaney DF, Chen XH, McIntosh TK, Gennarelli TA, Lenkinski RE (1998) Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 15:665–674

    PubMed  CAS  Google Scholar 

  • Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18:307–316

    PubMed  Google Scholar 

  • Solaroglu A, Suat Dede F, Gelisen O, Secilmis O, Dede H (2011) Neuroprotective effect of magnesium sulfate treatment on fetal brain in experimental intrauterine ischemia reperfusion injury. J Matern Fetal Neonatal Med 24(10):1259–1261

    PubMed  CAS  Google Scholar 

  • Stagliano NE, Dietrich WD, Prado R, Green EJ, Busto R (1997) The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res 759:32–40

    PubMed  CAS  Google Scholar 

  • Stippler M, Fischer MR, Puccio AM, Wisniewski SR, Carson-Walter EB, Dixon CE, Walter KA (2007) Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma 24:1347–1354

    PubMed  Google Scholar 

  • Suzer T, Coskun E, Islekel H, Tahta K (1999) Neuroprotective effect of magnesium on lipid peroxidation and axonal function after experimental spinal cord injury. Spinal Cord 37:480–484

    PubMed  CAS  Google Scholar 

  • Suzuki M, Nishina M, Endo M, Matsushita K, Tetsuka M, Shima K, Okuyama S (1997) Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats. Gen Pharmacol 28:119–121

    PubMed  CAS  Google Scholar 

  • Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol 42:177–185

    PubMed  CAS  Google Scholar 

  • Tavazzi B, Signoretti S, Lazzarino G, Amorini AM, Delfini R, Cimatti M, Marmarou A, Vagnozzi R (2005) Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery 56:582–589, discussion 582-9

    PubMed  Google Scholar 

  • Taylor CP, Meldrum BS (1995) Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 16:309–316

    PubMed  CAS  Google Scholar 

  • Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J, Lucas T, Newell DW, Mansfield PN, Machamer JE, Barber J, Dikmen SS (2007) Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 6:29–38

    PubMed  CAS  Google Scholar 

  • Turner RJ, Dasilva KW, O’Connor C, van den Heuvel C, Vink R (2004) Magnesium gluconate offers no more protection than magnesium sulphate following diffuse traumatic brain injury in rats. J Am Coll Nutr 23:541S–544S

    PubMed  CAS  Google Scholar 

  • Turner RJ, Blumbergs PC, Sims NR, Helps SC, Rodgers KM, Vink R (2006) Increased substance P immunoreactivity and edema formation following reversible ischemic stroke. Acta Neurochir Suppl 96:263–266

    PubMed  CAS  Google Scholar 

  • van Landeghem FK, Weiss T, Oehmichen M, von Deimling A (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23:1518–1528

    PubMed  Google Scholar 

  • Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP (2000) Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J Neurosurg 93:829–834

    PubMed  CAS  Google Scholar 

  • Vink R (1989) Phospholipase C activity reduces free magnesium concentration. Biochem Biophys Res Commun 165:913–918

    PubMed  CAS  Google Scholar 

  • Vink R, Cernak I (2000) Regulation of intracellular free magnesium in central nervous system injury. Front Biosci 5:D656–D665

    PubMed  CAS  Google Scholar 

  • Vink R, Nimmo AJ (2009) Multifunctional drugs for head injury. Neurotherapeutics 6:28–42

    PubMed  CAS  Google Scholar 

  • Vink R, McIntosh TK, Demediuk P, Faden AI (1987) Decrease in total and free magnesium concentration following traumatic brain injury in rats. Biochem Biophys Res Commun 149:594–599

    PubMed  CAS  Google Scholar 

  • Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI (1988a) Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma. J Biol Chem 263:757–761

    PubMed  CAS  Google Scholar 

  • Vink R, McIntosh TK, Yamakami I, Faden AI (1988b) 31P NMR characterization of graded traumatic brain injury in rats. Magn Reson Med 6:37–48

    PubMed  CAS  Google Scholar 

  • Vink R, Heath DL, McIntosh TK (1996) Acute and prolonged alterations in brain free magnesium following fluid percussion-induced brain trauma in rats. J Neurochem 66:2477–2483

    PubMed  CAS  Google Scholar 

  • Vink R, Young A, Bennett CJ, Hu X, Connor CO, Cernak I, Nimmo AJ (2003) Neuropeptide release influences brain edema formation after diffuse traumatic brain injury. Acta Neurochir Suppl 86:257–260

    PubMed  CAS  Google Scholar 

  • Wada K, Kamisaki Y, Ohkura T, Kanda G, Nakamoto K, Kishimoto Y, Ashida K, Itoh T (1998) Direct measurement of nitric oxide release in gastric mucosa during ischemia-reperfusion in rats. Am J Physiol 274:G465–G471

    PubMed  CAS  Google Scholar 

  • Weglicki WB, Phillips TM (1992) Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol 263:R734–R737

    PubMed  CAS  Google Scholar 

  • Weglicki WB, Phillips TM, Mak IT, Cassidy MM, Dickens BF, Stafford R, Kramer JH (1994) Cytokines, neuropeptides, and reperfusion injury during magnesium deficiency. Ann N Y Acad Sci 723:246–257

    PubMed  CAS  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    PubMed  CAS  Google Scholar 

  • Westermaier T, Hungerhuber E, Zausinger S, Baethmann A, Schmid-Elsaesser R (2003) Neuroprotective efficacy of intra-arterial and intravenous magnesium sulfate in a rat model of transient focal cerebral ischemia. Acta Neurochir (Wien) 145:393–399, discussion 399

    Google Scholar 

  • Yang Y, Qiu L, Fayyaz A, Shuaib A (2000) Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett 285:119–122

    PubMed  CAS  Google Scholar 

  • Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    PubMed  CAS  Google Scholar 

  • Zhang L, Rzigalinski BA, Ellis EF, Satin LS (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 274:1921–1923

    PubMed  CAS  Google Scholar 

  • Zhu HD, Martin R, Meloni B, Oltvolgyi C, Moore S, Majda B, Knuckey N (2004) Magnesium sulfate fails to reduce infarct volume following transient focal cerebral ischemia in rats. Neurosci Res 49:347–353

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renée J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turner, R.J., Corrigan, F., Vink, R. (2012). Magnesium in Acute Brain Injury. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_22

Download citation

Publish with us

Policies and ethics