Skip to main content

Iron-Chelating Therapy in Stroke

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Extensive preclinical and clinical investigations indicate that iron, ­mobilized from serum, body tissues, and brain, causes neurotoxic effects in cerebral ischemia and hemorrhage. Iron plays a role in neuronal injury by catalyzing oxidative reactions that yield highly reactive toxic hydroxyl radicals leading to oxidative stress and cell death, activating lipid peroxidation, and exacerbating excitotoxicity. Deferoxamine (DFO), a powerful iron chelator, has been demonstrated in experimental stroke models as an effective neuroprotective agent by multiple and diverse mechanisms, principally by limitation of iron-mediated neurotoxicity but also by non-iron-mediated effects. This chapter reviews the experimental and clinical data existing about the neuroprotective role of iron chelators, especially DFO, in brain ischemia and hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allain P, Mauras Y, Chaleil D, Simon P, Ang KS, Can G, Le Mignon L, Simon M (1987) Pharmacokinetics and renal elimination of desferrioxamine and ferrioxamine in healthy ­subjects and patients with haemochromatosis. Br J Clin Pharmacol 24:207–212

    Article  PubMed  CAS  Google Scholar 

  • Almli LM, Hamrick SE, Koshy AA, Täuber MG, Ferriero DM (2001) Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. Brain Res Dev Brain Res 132:121–129

    Article  PubMed  CAS  Google Scholar 

  • Arkadopoulos N, Nastos C, Kalimeris K, Economou E, Theodoraki K, Kouskouni E, Pafiti A, Kostopanagiotou G, Smyrniotis V (2010) Iron chelation for amelioration of liver ischemia-reperfusion injury. Hemoglobin 34:265–277

    Article  PubMed  CAS  Google Scholar 

  • Bartels-Stringer M, Verpalen JT, Wetzels JF, Russel FG, Kramers C (2007) Iron chelation or anti-oxidants prevent renal cell damage in the rewarming phase after normoxic, but not hypoxic cold incubation. Cryobiology 54:258–264

    Article  PubMed  CAS  Google Scholar 

  • Brittenham GM (2011) Iron-Chelating Therapy for transfusionl iron overload. N Eng J Med 364:146–156

    Article  CAS  Google Scholar 

  • Castellanos M, Puig N, Carbonell T, Castillo J, Martinez JM, Rama R, Dávalos A (2002) Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res 952:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd, Papadopoulos V, Snyder SH (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gao C, Hua Y, Keep RF, Muraszki K, Xi G (2011) Role of iron in brain injury after ­intraventricular hemorrhage. Stroke 42:465–470

    Article  PubMed  Google Scholar 

  • Chen-Roetling J, Chen L, Regan RF (2011) Apotransferrin protects cortical neurons from hemoglobin toxicity. Neuropharmacology 60:423–431

    Article  PubMed  CAS  Google Scholar 

  • Chi OZ, Hunter C, Liu X, Weiss HR (2008) Effects of deferoxamine on blood-brain barrier ­disruption and VEGF in focal cerebral ischemia. Neurol Res 30:288–293

    Article  PubMed  CAS  Google Scholar 

  • Christensen DW, Kislinf R, Thompson J, Kirby MA (2001) Deferoxamine toxicity in hepatome and primary rat cortical brain cultures. Hum Exp Toxicol 20:365–372

    Article  PubMed  CAS  Google Scholar 

  • Davalos A, Castillo J, Marrugat J, Fernandez-Real JM, Armengou A, Cacabelos P, Rama R (2000) Body iron stores and early neurological deterioration in acute cerebral infarction. Neurology 54:1568–1574

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Helfaer MA, Traystman RJ, Hurn PD (1997) Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs. Stroke 28:198–205

    Article  PubMed  CAS  Google Scholar 

  • Demougeot C, Van Hoecke M, Bertrand N, Progent-Tessier A, Mossiat C, Beley A, Marie C (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2´-Dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F, Dominiak P (2005) Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med 38:117–124

    Article  PubMed  CAS  Google Scholar 

  • Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF, Vita JA (2001) Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 103:2799–2804

    Article  PubMed  CAS  Google Scholar 

  • Fleischer JE, Lanier WL, Milde JH, Michenfelder JD (1987) Failure of deferoxamine, an iron chelator, to improve neurologic outcome following complete cerebral ischemia in dogs. Stroke 18:124–127

    Article  PubMed  CAS  Google Scholar 

  • Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E, Bernaudin M, Boulouard M, Schumann-Bard P (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 23:1757–1765

    Article  PubMed  Google Scholar 

  • Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G (2009) Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 40:2241–2243

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Hua Y, He Y, Wang L, Hu H, Keep RF, Xi G (2011) Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage. Acta Neurochir Suppl 111:123–128

    Article  PubMed  Google Scholar 

  • Guo S, Miyake M, Liu KJ, Shi H (2009) Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 108:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM (2005) A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci Lett 379:96–100

    Article  PubMed  CAS  Google Scholar 

  • Hanson LR, Roeytenberg A, Martínez PA, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH II, Scott Panter S (2009) Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther 330:679–686

    Article  PubMed  CAS  Google Scholar 

  • Hanze J, Weissmann N, Grimmimnger F, Seeger W, Rose F (2007) Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodelling. Thromb Haemost 97:774–787

    PubMed  Google Scholar 

  • Hatakeyama T, Okauchi M, Hua Y, Deep RF, Xi G (2011) Deferoxamine reduces cavity size in the brain after intracerebral hemorrhage in aged rats. Acta Neurochir Suppl 111:185–190

    Article  PubMed  Google Scholar 

  • Hua Y, Keep RF, Hoff JT, Xi G (2007) Brain injury after intracerebral hemorrhage. The role of thrombin and iron. Stroke 38:759–762

    Article  PubMed  CAS  Google Scholar 

  • Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293

    Article  PubMed  Google Scholar 

  • Huang H, He Z, Roberts LJ 2nd, Salahudeen AK (2003) Deferoxamine reduces cold-ischemic renal injury in a syngeneic kidney transplant model. Am J Transplant 3:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Hurn PD, Koehler RC, Blizzard KK, Traystman RJ (1995) Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke 26:688–694

    Article  PubMed  CAS  Google Scholar 

  • Jaremko KM, Chen-Roetling J, Chen L, Regan RF (2010) Accelerated hemolysis and neurotoxicity in neuron-glia-blood clot co-cultures. J Neurochem 114:1063–1073

    PubMed  CAS  Google Scholar 

  • Koch A, Loganathan S, Radovits T, Sack FU, Karck M, Szabó GB (2010) Deferoxamine, the newly developed iron chelator LK-614 and N-alpha-acetyl-histidine in myocardial protection. Interact Cardiovasc Thorac Surg 10:181–184

    Article  PubMed  Google Scholar 

  • Li YX, Ding SJ, Xiao L, Guo W, Zhan Q (2008) Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin. Neurosci Bull 24:89–95

    Article  PubMed  Google Scholar 

  • Liachenko S, Tang P, Xu Y (2003) Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cereb Blood Flow Metab 23:574–581

    Article  PubMed  CAS  Google Scholar 

  • Macmillan V, Fridovich I, Davis J (1993) Failure of iron chelators to protect against cerebral infarction in hypoxia-ischemia. Can J Neurol Sci 20:41–43

    PubMed  CAS  Google Scholar 

  • Mehdiratta M, Kumar S, Hackney D, Schlaug G, Selim M (2008) Association between serum ferritin levels and perihematoma edema volumen in patients with spontaneous intracerebral hemorrhage. Stroke 39:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Mehta SH, Webb C, Ergul A, Tawak A, Dorrance AM (2004) Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am J Physiol 286:283–288

    Article  Google Scholar 

  • Méthy D, Bertrand N, Prigent-Tessier A, Mossiat C, Stanimirovic D, Beley A, Marie C (2008) Beneficial effect of dipyridyl, a liposoluble iron chelator against focal cerebral ischemia: in vivo and in vitro evidence of protection of cerebral endothelial cells. Brain Res 1193:136–142

    Article  PubMed  Google Scholar 

  • Millán M, Sobrino T, Castellanos M, Nombela F, Arenillas JF, Riva E, Cristobo I, García MM, Vivacos J, Serena J, Moro MA, Castillo J, Dávalos A (2007) Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke. Stroke 38:90–95

    Article  PubMed  Google Scholar 

  • Millán M, Sobrino T, Arenillas JF, Rodríguez-Yáñez M, García M, Nombela F, Castellanos M, PérezdelaOssa N, Cuadras P, Serena J, Castillo J, Dávalos A (2008) Biological signatures of brain damage associated with high serum ferritin levels in patients with acute ischemic stroke and thrombolytic treatment. Dis Markers 20:181–188

    Google Scholar 

  • Millerot-Serrurot E, Bertrand N, Mossiat C, Faure P, Prigent-Tessier A, Garnier P, Bejot Y, Giroud M, Beley A, Marie C (2008) Temporal changes in free iron levels after brain ischemia. Relevance to the timing of iron chelation therapy in stroke. Neurochem Int 52:1442–1448

    Article  PubMed  CAS  Google Scholar 

  • Moussavian MR, Slotta JE, Kollmar O, Menger MD, Gronow G, Schilling MK (2008) Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators. Langenbecks Arch Surg 393:303–310

    Article  PubMed  Google Scholar 

  • Mu D, Chang YS, Vezler ZS, Ferreiro DM (2005) Hypoxia-inducible factor 1alpha and erytropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol 195:407–415

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100:672–678

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Keep RF, Hua Y, Nagao S, Hoff JT, Xi G (2006) Iron-induced oxidative brain injury after experimental intracerebral hemorrhage. Acta Neurochir 96:194–198

    Article  CAS  Google Scholar 

  • Nitenberg A, Paycha F, Ledoux S (1998) Coronary artery responses to physiological stimuli are improved by deferoxamine but no by L-arginine in non-insulin-dependent diabetic patients with angiographically normal coronary arteries and no the risk factors. Circulation 97:736–743

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi M et al (2010) Mitogen-activated protein kinases support survival of activated microglia that mediate thrombin-induced striatal injury in organotypic slice culture. J Neurosci Res 88:2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G (2009) Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 40:1858–1863

    Article  PubMed  CAS  Google Scholar 

  • Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G (2010) Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke 41:375–382

    Article  PubMed  CAS  Google Scholar 

  • Palmer C, Roberts RL, Bero C (1994) Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 25:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Palmer LA, Semenza GL, Stoler MH, Johns RA (1998) Hypoxia induces type II NOS gene expression in pulmonary artery endotelial cells via HIF-1. Am J Physiol 274:L212–L219

    PubMed  CAS  Google Scholar 

  • Papazisis G, Pourzitaki C, Sardeli C, Lallas A, Amaniti E, Kouvelas D (2008) Deferoxamine decreases the excitatory amino acid levels and improves the histological outcome in the hippocampus of neonatal rats after hypoxia-ischemia. Pharmacol Res 57:73–78

    Article  PubMed  CAS  Google Scholar 

  • Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990) Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25:224–228

    Article  PubMed  CAS  Google Scholar 

  • Peeters C, Hoelen D, Groenendaal F, van Bel F, Bär D (2003) Deferoxamine, allopurinol and ­oxypurinol are not neuroprotective after oxygen/glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res 963:72–80

    Article  PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, Buul-Offers S, Hagberg H, Nicolay K, Van Bel F, Groenendal F (2003) Effects of Allopurinol and Deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal Hypoxia-Ischemia. Pediatr Res 54:516–522

    Article  PubMed  CAS  Google Scholar 

  • Pérez de la Ossa N, Sobrino T, Silva Y, Blanco M, Millán M, Gomis M, Agulla J, Araya P, Reverté S, Serena J, Dávalos A (2010) Iron-related brain damage in patients with intracerebral hemorrhage. Stroke 41:810–813

    Article  PubMed  Google Scholar 

  • Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–557

    Article  PubMed  CAS  Google Scholar 

  • Ramu E, Korach A, Houminer E, Schneider A, Elami A, Schwalb H (2006) Dexrazoxane prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Cardiovasc Drugs Ther 20:343–348

    Article  PubMed  CAS  Google Scholar 

  • Regan RF, Panter SS (1993) Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett 153:219–222

    Article  PubMed  CAS  Google Scholar 

  • Regan RF, Panter SS (1996) Hemoglobin potentiates excitotoxic injury in cortical cell culture. J Neurotrauma 13:223–231

    PubMed  CAS  Google Scholar 

  • Regan RF, Rogers B (2003) Delayed treatment of hemoglobin neurotoxicity. J Neurotrauma 20:111–120

    Article  PubMed  Google Scholar 

  • Sarco DP, Becker J, Palmer C, Sheldon RA, Ferreiro DM (2000) The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain. Neurosci Lett 282:113–116

    Article  PubMed  CAS  Google Scholar 

  • Selim M (2009) Deferoxamine Mesylate: A new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 40(suppl 1):S90–S91

    Article  PubMed  CAS  Google Scholar 

  • Shadid M, Buonocre G, Groenendaal F, Moison R, Ferrali M, Berger HM, van Bel F (1998) Effect of deferoxamine and allopurinol on non-protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia-ischemia. Neurosci Lett 248:5–8

    Article  PubMed  CAS  Google Scholar 

  • Soloniuk DS, Perkins E, Wilson JR (1992) Use of allopurinol and deferoxamine in cellular protection during ischemia. Surg Neurol 38:110–113

    Article  PubMed  CAS  Google Scholar 

  • Song S, Hua Y, Keep RF, Hoff JT, Xi G (2007) A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced ­neuronal death. Stroke 38:2861–2863

    Article  PubMed  Google Scholar 

  • Song S, Hua Y, Keep RF, He Y, Wang J, Xi G (2008) Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl 105:13–18

    Article  PubMed  CAS  Google Scholar 

  • Sorond FA, Shaffer ML, Kuung AL, Lipsitz LA (2009) Desferroxamine infusion increases cerebral blood flow: a potential association with hypoxia-inducible factor-1. Clin Sci 116:771–779

    Article  PubMed  CAS  Google Scholar 

  • Summers MR, Jacobs A, Tudway D, Parera P, Ricketts C (1979) Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br J Haematol 42:547–555

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooij MA, Groenendaal F, Kavelaars A, Hejinen CJ, van Bel F (2009) Cobination of deferoxamine and erythropoietin: therapy fro hypoxia-ischemia-induced brain injury in the neonatal rat ? Neurosci Lett 451:109–113

    Article  PubMed  Google Scholar 

  • Van Hoecke M, Prigent-Tessier A, Bertrand N, Prevotat L, Marie C, Beley A (2005) Apoptotic cell death progression after photothrombotic focal cerebral ischemia: effects of the lipophilic iron chelator 2,2´-dipyridyl. Eur J Neurosci 22:1045–1056

    Article  PubMed  Google Scholar 

  • Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  PubMed  CAS  Google Scholar 

  • Warkentin LM, Auriat AM, Wowk S, Colbourne F (2010) Failure of deferoxamine, an iron chelators, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res 1309:95–103

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, Xi G (2002) Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res 953:45–52

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Wu T, Xu X, Wang J, Wang J (2011) iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab 31:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  • Xing Y, Hua Y, Keep RF, Xi G (2009) Effects of deferoxamine on brain injury after transient focal cerebral ischemia in rats with hyperglycemia. Brain Res 1291:113–121

    Article  PubMed  CAS  Google Scholar 

  • Xue M, Hollenberg MK, Yong VW (2006) Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. Neurobiol Dis 26:10281–10291

    CAS  Google Scholar 

  • Zhao Y, Rempe DA (2011) Prophylactic neuroprotection against stroke: low-dose, prolonged treatment with deferoxamine or deferasirox establishes prolonged neuroprotection independent of HIF-1 function. J Cereb Blood Flow Metab 31:1412–1423

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Millán MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Millán, M., de la Ossa, N.P., Gasull, T. (2012). Iron-Chelating Therapy in Stroke. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_14

Download citation

Publish with us

Policies and ethics