Skip to main content

Implication of Oxidative Stress and “Labile Iron” in the Molecular Mechanisms of Ischemic Stroke

  • Chapter
  • First Online:
Book cover Metal Ion in Stroke

Abstract

Strong experimental data support the notion that excessive generation of reactive free radicals takes place in the ischemic area following a stroke episode and that these radicals are responsible for a substantial part of brain injury. However, the exact biochemical mechanisms underlying brain cell damage remain elusive, thus hindering the attempts for development of effective therapeutic strategies. In this presentation, the molecular mechanisms of tissue damage in relation to temporal and spatial generation of “reactive oxygen species” are considered. The mechanisms of oxidant-mediated brain damage are discussed and the role of “labile iron” in this process is evaluated. Although oxygen based oxidants are generated during all phases, their sources and intensities as well as their temporal and spatial generation differ considerably among different phases in stroke. Based on the above ­considerations, it is proposed that administration of appropriate “labile iron” chelating agents, preferentially prior to reperfusion, might improve the efficacy of any therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischemic stroke. Int J Stroke 4:461–470

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio G, Zweier JL, Flaherty JT (1991) The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol 23:1359–1374

    Article  PubMed  CAS  Google Scholar 

  • Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  PubMed  CAS  Google Scholar 

  • Azzi A, Davies KJA, Kelly F (2004) Free radical biology: terminology and critical thinking. FEBS Lett 558:3–6

    Article  PubMed  CAS  Google Scholar 

  • Bailey DM, Robach P, Thomsen JJ, Lundby C (2006) Erythropoietin depletes iron stores: antioxidant neuroprotection for ischemic stroke. Stroke 37:2453–2453

    Article  PubMed  Google Scholar 

  • Barbouti A, Doulias PT, Zhu BZ, Frei B, Galaris D (2001) Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radic Biol Med 31:490–498

    Article  PubMed  CAS  Google Scholar 

  • Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470

    Article  PubMed  CAS  Google Scholar 

  • Becker LB, Vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–H2246

    PubMed  CAS  Google Scholar 

  • Belayev L, Liu Y, Zhao W, Busto R, Ginsberg MD (2001) Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 32:553–560

    Article  PubMed  CAS  Google Scholar 

  • Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    Article  PubMed  CAS  Google Scholar 

  • Breuer W, Schvartsman M, Cabantchik ZI (2008) Intracellular labile iron. Int J Biochem Cell Biol 40:350–354

    Article  PubMed  CAS  Google Scholar 

  • Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    Article  PubMed  CAS  Google Scholar 

  • Carroll JE, Howard EF, Hess DC, Wakade CG, Chen Q, Chen C (1998) Nuclear factor-kB activation during cerebral reperfusion: effect of attenuation with N-acetylcysteine treatment. Mol Brain Res 56:186–191

    Article  PubMed  CAS  Google Scholar 

  • Celic M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S et al (2004) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263

    Article  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chen H, Yoshioka H, Kim JS, Jung JE, Okami N (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antiox Redox Signal 14:1505–1517

    Article  CAS  Google Scholar 

  • Cherubini A, Ruggiero C, Polidori MC, Mecocci P (2005) Potential markers of oxidative stress in stroke. Free Radic Biol Med 39:841–852

    Article  PubMed  CAS  Google Scholar 

  • Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    PubMed  CAS  Google Scholar 

  • Davalos A, Castillo J, Marrugat J, Fernandez-Real JM, Armengou A (2000) Body iron stores and early neurological deterioration in acute cerebral infarction. Neurology 54:1568–1574

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47

    PubMed  CAS  Google Scholar 

  • Demougeot C, Van Hoecke M, Bertrand N, Pringent-Tessier A, Mossiat C (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Doulias P-T, Barbouti A, Galaris D, Ishiropoulos H (2001) SIN-1-induced DNA damage in isolated human peripheral blood lymphocytes as assessed by single cell gel electrophoresis (comet assay). Free Radic Biol Med 30:679–85

    Article  PubMed  CAS  Google Scholar 

  • Doulias PT, Christoforidis S, Brunk UT, Galaris D (2003) Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic Biol Med 35:719–28

    Article  PubMed  CAS  Google Scholar 

  • Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983

    Article  PubMed  CAS  Google Scholar 

  • Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 248:31–40

    Article  PubMed  CAS  Google Scholar 

  • Esposito BP, Epsztejn S, Breuer W, Cabantchik ZI (2002) A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal Biochem 304:1–18

    Article  PubMed  CAS  Google Scholar 

  • Feigin VL, Lawes CMM, Bennett DA, Andrews CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  PubMed  Google Scholar 

  • Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J (1978) Free radicals in cerebral ischemia. Stroke 9:445–447

    Article  PubMed  CAS  Google Scholar 

  • Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23

    Article  PubMed  CAS  Google Scholar 

  • Galaris D, Evangelou A (2002) The role of oxidative stress in mechanism of metal-induced carcinogenesis. Crit Rev Oncol Heamatol 42:93–103

    Article  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L et al (2005) Mitochondrial complex III is required hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing my mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2000) The antioxidant paradox. Lancet 355:1179–1180

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Upadhyay U, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245

    Article  PubMed  Google Scholar 

  • Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ et al (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cereboprotection in experimental stroke. Proc Natl Acad Sci U S A 98:11720–11724

    Article  PubMed  CAS  Google Scholar 

  • Hurn PD, Koehler RG, Blizzard KK, Traystman RJ (1995) Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke 26:688–694

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann W (2010) Erythropoietin: back to basics. Blood 115:4151–4152

    Article  PubMed  Google Scholar 

  • Joyeux-Faure M (2007) Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther 323:759–762

    Article  PubMed  CAS  Google Scholar 

  • Katavetin P, Tungsanga K, Eiam-Ong S, Nangaku M (2007) Antioxidative effects of erythropoietin. Kidney Int 107:S10–S15

    Article  CAS  Google Scholar 

  • Kurz T, Gustafson B, Brunk UT (2011) Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med 50:1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pletri S, Culcasi M, Bockaert J (1993) NMDA dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA, Zivin JA (2003) Ebselen, a seleno-organic antioxidant, is neuroprotective after embolic strokes in rabbits: synergism with low dose tissue plasminogen activator. Stroke 34:2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Ghezzzi P, Grasso G, Bianchi R, Villa P, Fratelli M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb DC, Gorman LG, Traystman RJ, Hunt PD (1998) Low molecular weight iron in cerebral ischemic acidosis in vivo. Stroke 29:487–493

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ (2004) Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24:343–349

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Narasimhan P, Yu F, Chan PH (2005) Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, de Groot GH, Liu Z, Hider RC, Petrat F (2006) Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescence probes. Biochem J 395:49–55

    Article  PubMed  CAS  Google Scholar 

  • Malhotra S, Savitz SI, Ocava L, Rosenbaum DM (2006) Ischemic preconditioning is mediated by erythropoietin through PI-3kinase signaling in an animal model of transient ischemic attack. J Neurosci Res 83:19–27

    Article  PubMed  CAS  Google Scholar 

  • Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39:429–443

    Article  PubMed  CAS  Google Scholar 

  • Mehta SH, Webb RC, Ergul A, Tawfik A, Dorrance AM (2004) Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am J Physiol Regul Interg Comp Physiol 286:283–288

    Article  Google Scholar 

  • Methy D, Bertrand N, Prigent-Tessier A, Mossiat C, Stanimirovic D et al (2008) Beneficial effects of bipyridyl, a liposome iron chelator against focal cerebral ischemia: In vivo and in vitro evidence of protection of cerebral endothelial cells. Brain Res 1193:136–142

    Article  PubMed  CAS  Google Scholar 

  • Millan M, Sobrino T, Castellanos M, Nombela F, Arenillas JF (2007) Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke. Stroke 38:90–95

    Article  PubMed  Google Scholar 

  • Minnerup J, Heidrich J, Heidrich J, Roga lewski A, Schabitz WR, Wellmann J (2009) The efficacy of erythropoietin and its analogues in animal stroke models: a meta-analysis. Stroke 40:3113–3120

    Article  PubMed  CAS  Google Scholar 

  • Ollinger K, Brunk UT (1995) Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med 19:565–574

    Article  PubMed  CAS  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  PubMed  CAS  Google Scholar 

  • Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT (2003) Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med 34:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Prass K, Ruscher K, Karsch M, Isaev N, Megov D et al (2002) Desferoxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–525

    Article  PubMed  CAS  Google Scholar 

  • Rhee S-G (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Rink C, Khanna S (2011) Significance of brain tissue oxygenation and arachidonic acid cascade in stroke. Antiox Redox Signal 14:1890–1903

    Google Scholar 

  • Ruscher K, Freyer D, Karsch M, Isaev N, Megow D et al (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301

    PubMed  CAS  Google Scholar 

  • Sarti C, Rastenyte D, Cepaitis Z, Tuomiletho J (2000) International trends in mortality from stroke. Stroke 31:1588–1601

    Article  PubMed  CAS  Google Scholar 

  • Selim MH, Ratan RR (2004) The role of iron neurotoxicity in ischemic stroke. Ageing Res 3:345–353

    Article  CAS  Google Scholar 

  • Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic, Orlando, FL, pp 1–7

    Google Scholar 

  • Soloniuk DS, Perkins E, Wilson JR (1992) Use of allopurinol and deferoxamine in cellular protection during ischemia. Surg Neurol 38:110–113

    Article  PubMed  CAS  Google Scholar 

  • Stone JA, Yang S (2006) Hydrogen peroxide: a signalling messenger. Antiox Redoc Signal 8:243–269

    Article  CAS  Google Scholar 

  • Tavling P, Lustenberger T, Kobayashi L, Inaba K, Barmparas G et al (2010) Erythropoiesis stimulating agent administration improves survival after severe traumatic brain injury: a matched case control study. Ann Surg 251:1–4

    Article  Google Scholar 

  • Tenopoulou M, Doulias P-T, Barbouti A, Brunk U, Galaris D (2005) The role of compartmentalized redox-active iron on hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 387:701–710

    Google Scholar 

  • Tenopoulou M, Kurz T, Doulias P-T, Galaris D, Brunk U (2007) Does the calcein-AM method assay the total cellular “labile iron pool” or only a fraction of it? Biochem J 403:261–266

    Article  PubMed  CAS  Google Scholar 

  • Togashi H, Shinzawa H, Matsuo T, Takeda Y, Takahashi T et al (2000) Analysis of hepatic oxidative stress status by electron spin resonance spectroscopy and imaging. Free Radic Biol Med 28:846–853

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama A, Kim J-S, Kon K, Jaeschke H, Ikejima K et al (2008) Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48:1644–1654

    Article  PubMed  CAS  Google Scholar 

  • Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functional mitochondrial respiratory chain. Blood 98:296–302

    Article  PubMed  CAS  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signalling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang ZG, Rhodes K, Renzi M, Zhang RL et al (2007) Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. Br J Pharmacol 151:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MBH (2010) Neuroprotective multifactional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antiox Redox Signal 13:919–949

    Article  CAS  Google Scholar 

  • Wiese AG, Pacifici RE, Davies KJ (1995) Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys 318:231–240

    Article  PubMed  CAS  Google Scholar 

  • Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP (1998) Uric acid protects neurons against ­excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53:613–625

    Article  PubMed  CAS  Google Scholar 

  • Zhengquan Y, Persson H, Eaton J, Brunk U (2003) Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 34:1243–1252

    Article  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 84:1404–1407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Panagiotis Korantzopoulos and Stilianos Kokkoris for critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Galaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galaris, D., Kitsati, N., Pelidou, SH., Barbouti, A. (2012). Implication of Oxidative Stress and “Labile Iron” in the Molecular Mechanisms of Ischemic Stroke. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_12

Download citation

Publish with us

Policies and ethics