Skip to main content

Large Deviations

  • Chapter
  • First Online:
Book cover Probability for Statistics and Machine Learning

Part of the book series: Springer Texts in Statistics ((STS))

  • 13k Accesses

Abstract

The mean μ of a random variable X is arguably the most common one number summary of the distribution of X. Although averaging is a primitive concept with some natural appeal, the mean μ is a useful summary only when the random variable X is concentrated around the mean μ, that is, probabilities of large deviations from the mean are small. The most basic large deviation inequality is Chebyshev’s inequality, which says that if X has a finite variance σ2, then \(P(\vert X - \mu \vert > k\sigma ) \leq \frac{1} {{k}^{2}}\). But, usually, this inequality is not strong enough in specific applications, in the sense that the assurance we seek is much stronger than what Chebyshev’s inequality will give us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, R.J. (1987). An Introduction to Continuity, Extrema, and Related Topics, IMS, Lecture Notes and Monograph Series, Hayward, CA.

    Google Scholar 

  • Basu, S. and DasGupta, A. (1991). Robustness of standard confidence intervals for location parameters under departure from normality, Ann. Stat., 23, 1433–1442.

    Article  MathSciNet  Google Scholar 

  • Borell, C. (1975). Convex functions in d-space, Period. Math. Hungar., 6, 111–136.

    Article  MathSciNet  Google Scholar 

  • Bucklew, J. (2004). Introduction to Rare Event Simulation, Springer, New York.

    MATH  Google Scholar 

  • Cressie, N. (1980). Relaxing assumptions in the one sample t-test, Austr. J. Statist., 22, 143–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Dembo, A. and Shao, Q.M. (2006). Large and moderate deviations for Hotelling’s T 2 statistic, Electron. Comm. Prob., 11, 149–159.

    MathSciNet  MATH  Google Scholar 

  • Dembo, A. and Zeitouni, O. (1998). Large Deviations, Techniques and Applications, Jones and Bartlett, Boston.

    Book  MATH  Google Scholar 

  • den Hollander, F. (2000). Large Deviations, AMS, Providence, RI.

    MATH  Google Scholar 

  • Devroye, L., Gyorfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition, Springer, New York.

    MATH  Google Scholar 

  • Dubhashi, D. and Panconesi, A. (2009). Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  • Dudley, R.M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal., 1, 290–330.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B. (1969). Student’s t-test under symmetry conditions, J. Amer. Statist. Assoc., 64, 1278–1302.

    MathSciNet  MATH  Google Scholar 

  • Fernique, X. (1974). Des resultats nouveaux sur les processus gaussiens, C. R. Acad. Sci. Paris, Ser. A, 278, 363–365.

    Google Scholar 

  • Giné, E., G\(\ddot{o}\)tze, F., and Mason, D.M. (1997). When is the Student’s t-statistic asymptotically standard normal?, Ann. Prob., 25, 1514–1531.

    Google Scholar 

  • Groeneboom, P. and Oosterhoff, J. (1977). Bahadur efficiency and probabilities of large deviations, Statist. Neerlandica, 31, 1, 1–24.

    MathSciNet  MATH  Google Scholar 

  • Groeneboom, P. and Oosterhoff, J. (1980). Bahadur Efficiency and Small Sample Efficiency : A Numerical Study, Mathematisch Centrum, Amsterdam.

    Google Scholar 

  • Groeneboom, P. and Oosterhoff, J. (1981). Bahadur efficiency and small sample efficiency, Internat. Statist. Rev., 49, 2, 127–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. (1987). Edgeworth expansions for Student’s t-statistic under minimal moment conditions, Ann. Prob., 15, 920–931.

    Article  MATH  Google Scholar 

  • Hall, P. and Wang, Q. (2004). Exact convergence rate and leading term in central limit theorem for Student’s t-statistic, Ann. Prob., 32, 1419–1437.

    Article  MathSciNet  MATH  Google Scholar 

  • Landau, H.J. and Shepp, L. (1970). On the supremum of a Gaussian process, Sankhy\bar{a}, Ser. A, 32, 369–378.

    Google Scholar 

  • Ledoux, M. (2004). Spectral gap, logarithmic Sobolev constant, and geometric bounds, Surveys in Differential Geometry, IX, 219–240, International. Press, Somerville, MA.

    Google Scholar 

  • Logan, B.F., Mallows, C.L., Rice, S.O., and Shepp, L. (1973). Limit distributions of self-normalized sums, Ann. Prob., 1, 788–809.

    Article  MathSciNet  MATH  Google Scholar 

  • Lugosi, G. (2004). Concentration Inequalities, Preprint.

    Google Scholar 

  • McDiarmid, C. (1998). Concentration, Prob. Methods for Algorithmic Discrete Math., 195–248, Algorithm. Combin., 16, Springer, Berlin.

    Google Scholar 

  • Shao, Q.M. (1997). Self-normalized large deviations, Ann. Prob., 25, 285–328.

    Article  MATH  Google Scholar 

  • Stroock, D. (1984). An Introduction to the Theory of Large Deviations, Springer, New York.

    Book  MATH  Google Scholar 

  • Sudakov, V.N. and Cirelson, B.S. (1974). Extremal properties of half spaces for spherically invariant measures, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov, 41, 14–24.

    MathSciNet  MATH  Google Scholar 

  • Talagrand, M. (1995). Concentration of measures and isoperimetric inequalities, Inst. Hautes Etudes Sci. Publ. Math., 81, 73–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Talagrand, M. (1996). Majorizing measures: the generic chaining, Ann. Prob., 24, 1049–1103.

    Article  MathSciNet  MATH  Google Scholar 

  • Varadhan, S.R.S. (1984). Large Deviations and Applications, SIAM, Philadelphia.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban DasGupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DasGupta, A. (2011). Large Deviations. In: Probability for Statistics and Machine Learning. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9634-3_17

Download citation

Publish with us

Policies and ethics