Skip to main content

Empirical Processes and VC Theory

  • Chapter
  • First Online:
Book cover Probability for Statistics and Machine Learning

Part of the book series: Springer Texts in Statistics ((STS))

  • 13k Accesses

Abstract

Like martingales, empirical processes also unify an incredibly large variety of problems in probability and statistics. Results in empirical processes theory are applicable to numerous classic and modern problems in probability and statistics; a few examples of applications are the study of central limit theorems in more general spaces than Euclidean spaces, the bootstrap, goodness of fit, density estimation, and machine learning. Familiarity with the basic theory of empirical processes is extremely useful across fields in probability and statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, K. (1987). The central limit theorem for empirical processes on Vapnik-Chervonenkis classes, Ann. Prob., 15, 178–203.

    Article  MATH  Google Scholar 

  • Beran, R. and Millar, P. (1986). Confidence sets for a multinomial distribution, Ann. Statist., 14, 431–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures, John Wiley, New York.

    MATH  Google Scholar 

  • Chibisov, D. (1964). Some theorems on the limiting behavior of an empirical distribution function, Theor. Prob. Appl. 71, 104–112.

    MATH  Google Scholar 

  • Csáki, E. (1980). On the standardized empirical distribution function, Nonparametric Statist. Infer. I, Colloq. Math. Soc. János Bolyai, 32, North-Holland, Amsterdam. 123–138.

    Google Scholar 

  • Cs\ddot{o}rgo, M. (1983). Quantile processes with statistical applications, CBMS-NSF Regional conf. ser., 42, SIAM, Philadelphia.

    Google Scholar 

  • Cs\(\ddot{o}\)rgo, M. (2002). A glimpse of the impact of Pal Erd\(\ddot{o}\)s on probability and statistics, Canad. J. Statist., 30, 4, 493–556.

    Google Scholar 

  • Cs\(\ddot{o}\)rgo, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics, Academic Press, New York.

    Google Scholar 

  • DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability, Springer, New York.

    MATH  Google Scholar 

  • del Barrio, E., Deheuvels, P., and van de Geer, S. (2007). Lectures on Empirical Processes, European Mathematical Society, Zurich.

    Book  MATH  Google Scholar 

  • Donsker, M. (1952). Justification and extension to Doob’s heuristic approach to Kolmogorov-Smirnov theorems, Ann. Math. Statist., 23, 277–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. (1978). Central limit theorems for empirical measures, Ann. Prob., 6, 899–929.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. (1979). Central limit theorems for empirical measures, Ann. Prob., 7, 5, 909–911.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. (1984). A Course on Empirical Processes, Springer-Verlag, New York.

    Google Scholar 

  • Dudley, R. (1999). Uniform Central Limit Theorems, Cambridge University Press, Cambridge,UK.

    Book  MATH  Google Scholar 

  • Eicker, F. (1979). The asymptotic distribution of the supremum of the standardized empirical process, Ann. Statist., 7, 116-138.

    Article  MathSciNet  MATH  Google Scholar 

  • Einmahl, J. and Mason, D. M. (1985). Bounds for weighted multivariate empirical distribution functions, Z. Wahr. Verw. Gebiete, 70, 563–571.

    Article  MathSciNet  MATH  Google Scholar 

  • Giné, E. (1996). Empirical processes and applications: An overview, Bernoulli, 2, 1, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes: With discussion, Ann. Prob., 12, 4, 929–998.

    Article  MATH  Google Scholar 

  • Jaeschke, D. (1979). The asymptotic distribution of the supremum of the standardized empirical distribution function over subintervals, Ann. Statist., 7, 108–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Komlós, J., Major, P., and Tusnady, G. (1975a). An approximation of partial sums of independent rvs and the sample df :I, Zeit f \(\ddot{u}\) r Wahr. Verw. Geb., 32, 111–131.

    Google Scholar 

  • Komlós, J., Major, P., and Tusnady, G. (1975b). An approximation of partial sums of independent rvs and the sample df :II, Zeit f \(\ddot{u}\) r Wahr. Verw. Geb., 34, 33–58.

    Google Scholar 

  • Kosorok, M. (2008). Introduction to Empirical Processes and Semiparametric Inference, Springer, New York.

    Book  MATH  Google Scholar 

  • Mason, D. and van Zwet, W.R. (1987). A refinement of the KMT inequality for the uniform empirical process, Ann. Prob., 15, 871–884.

    Article  MATH  Google Scholar 

  • O’Reilly, N. (1974). On the weak convergence of empirical processes in sup-norm metrics, Ann. Prob., 2, 642–651.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, D. (1989). Asymptotics via empirical processes, statist. Sci., 4, 4, 341–366.

    MathSciNet  MATH  Google Scholar 

  • Sauer, N. (1972). On the density of families of sets, J. Comb. Theory, Ser A, 13, 145–147.

    Google Scholar 

  • Shorack, G. and Wellner, J. (2009). Empirical Processes, with Applications to Statistics, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Vapnik, V. and Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities, Theory Prob. Appl., 16, 264–280.

    Article  MATH  Google Scholar 

  • Wellner, J. (1992). Empirical processes in action: A review, Int. Statist. Rev., 60, 3, 247–269.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban DasGupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DasGupta, A. (2011). Empirical Processes and VC Theory. In: Probability for Statistics and Machine Learning. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9634-3_16

Download citation

Publish with us

Policies and ethics