NanoBiosensing pp 241-264 | Cite as

Biosensing with Nanoparticles as Electrogenerated Chemiluminsecence Emitters

  • Huangxian Ju
  • Xueji Zhang
  • Joseph Wang
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Electrogenerated chemiluminescence (ECL), also known as electrochemiluminescence, is the luminescence generated by relaxation of exited-state molecules that are produced during an electrochemically initiated reaction [1]. The phenomenon of ECL has been known for a long time. Reports date back as far as 1927 for the light emission of Grignard compounds at applied potentials [2] and 1929 for the ECL of luminol [3]. Along with subsequent publications concentrated on the investigation of the mechanism and nature of ECL, especially of polyaromatic hydrocarbons (PAHs) and metal complexes [4–6], ECL has now become a very powerful analytical technique and been widely used in the areas of, for example, immunoassay, food and water testing, and biowarfare agent detection [7, 8]. As a method of producing light at an electrode, ECL represents a marriage between electrochemical and spectroscopic methods. This gives ECL many distinct advantages over other spectroscopy-based detection systems. For example, ECL do not involve a light source as fluorescence methods do; thus, the attendant problems of scattered light and luminescent impurities are absent without the presence of a background signal. Moreover, the specificity of the ECL reaction associated with the ECL label and the coreactant species decreases problems with side reactions, such as self-quenching.


H2O2 Dopamine Tyrosine Hydrocarbon PAHs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fahnrich, K.A., Pravda, M., Guilbault, G.G.: Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54, 531–559 (2001)CrossRefGoogle Scholar
  2. 2.
    Dufford, R.T., Nightingale, D., Gaddum, L.W.: Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena. J. Am. Chem. Soc. 49, 1858–1864 (1927)CrossRefGoogle Scholar
  3. 3.
    Harvey, N.: Luminescence during electrolysis. J. Phys. Chem. 33, 1456–1459 (1929)CrossRefGoogle Scholar
  4. 4.
    Zweig, A., Maurer, A.H., Roberts, B.G.: Oxidation, reduction, and electrochemiluminescence of donor-substituted polycyclic aromatic hydrocarbons. J. Org. Chem. 32, 1322–1329 (1967)CrossRefGoogle Scholar
  5. 5.
    Zweig, A., Maricle, D.L., Brinen, J.S., et al.: Electrochemical generation of the phenanthrene triplet. J. Am. Chem. Soc. 89, 473–474 (1967)CrossRefGoogle Scholar
  6. 6.
    Tokel, N., Bard, A.J.: Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 94, 2862–2863 (1972)CrossRefGoogle Scholar
  7. 7.
    Richter, M.M.: Electrochemiluminescence. Chem. Rev. 104, 3003–3036 (2004)CrossRefGoogle Scholar
  8. 8.
    Miao, W.J.: Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008)CrossRefGoogle Scholar
  9. 9.
    Bruchez, M., Moronne, M., Gin, P., et al.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  10. 10.
    Chan, W.C.W., Nie, S.M.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)CrossRefGoogle Scholar
  11. 11.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)CrossRefGoogle Scholar
  12. 12.
    Ding, Z., Quinn, B.M., Haram, S.K., et al.: Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297 (2002)CrossRefGoogle Scholar
  13. 13.
    Bard, A.J., Ding, Z., Myung, N.: Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films. Struct Bond 118, 1–57 (2005)CrossRefGoogle Scholar
  14. 14.
    Gill, R., Zayats, M., Willner, I.: Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)CrossRefGoogle Scholar
  15. 15.
    Qi, H., Peng, Y., Gao, Q., et al.: Developments and applications of electrogenerated ­chemiluminescence sensors based on micro- and nanomaterials. Sensors 9, 674–695 (2009)CrossRefGoogle Scholar
  16. 16.
    Hazelton, S.G., Zheng, X., Zhao, J., et al.: Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors 8, 5942–5960 (2009)CrossRefGoogle Scholar
  17. 17.
    Bertoncello, P., Forster, R.J.: Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens. Bioelectron. 24, 3191–3200 (2009)CrossRefGoogle Scholar
  18. 18.
    Chen, M., Pan, L., Huang, Z., et al.: A novel route to CdS nanocrystals with strong electrogenerated chemiluminescence. Mater. Chem. Phys. 101, 317–321 (2007)CrossRefGoogle Scholar
  19. 19.
    Myung, N., Ding, Z., Bard, A.J.: Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2, 1315–1319 (2002)CrossRefGoogle Scholar
  20. 20.
    Zhou, J., Zhu, J., Brzezinski, J., et al.: Tunable electrogenerated chemiluminescence from CdSe nanocrystals. Can. J. Chem. 87, 386–391 (2009)CrossRefGoogle Scholar
  21. 21.
    Bae, Y., Myung, N., Bard, A.J.: Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 4, 1153–1161 (2004)CrossRefGoogle Scholar
  22. 22.
    Shen, L.H., Cui, X.X., Qi, H.L., et al.: Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J. Phys. Chem. C 111, 8172–8175 (2007)CrossRefGoogle Scholar
  23. 23.
    Sun, L.F., Bao, L., Bartnik, A.C., et al.: Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 9, 789–793 (2009)CrossRefGoogle Scholar
  24. 24.
    Geng, J., Liu, B., Jie, G., et al.: Synthesis and electrogenerated chemiluminescence of PbS nanospheres. J. Nanosci. Nanotechnol 9, 2387–2391 (2008)CrossRefGoogle Scholar
  25. 25.
    Wei, W., Zhang, S., Fang, C., et al.: Electrochemical behavior and electrogenerated chemiluminescence of crystalline CuSe nanotubes. Solid State Sci. 10, 622–628 (2008)CrossRefGoogle Scholar
  26. 26.
    Zheng, L.Y., Chi, Y.W., Dong, Y.Q., et al.: Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131, 4564–4565 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhu, H., Wang, X., Li, Y., et al.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 4, 5118–5120 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, X.F., Xu, J.J., Chen, H.Y.: Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemiluminescence behaviors in aqueous systems. J. Phys. Chem. C 112, 7151–7157 (2008)CrossRefGoogle Scholar
  29. 29.
    Myung, N., Bae, Y., Bard, A.J.: Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett. 3, 1053–1055 (2003)CrossRefGoogle Scholar
  30. 30.
    Fang, Y.M., Sun, J.J., Wu, A.H., et al.: Catalytic electrogenerated chemiluminescence and nitrate reduction at CdS nanotubes modified glassy carbon electrode. Langmuir 25, 555–560 (2009)CrossRefGoogle Scholar
  31. 31.
    Jiang, H., Ju, H.X.: Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal. Chem. 79, 6690–6696 (2007)CrossRefGoogle Scholar
  32. 32.
    Myung, N., Lu, X., Johnston, K.P., et al.: Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett. 4, 183–185 (2004)CrossRefGoogle Scholar
  33. 33.
    Shim, M., Wang, C., Guyot-Sionnest, P.: Charge-tunable optical properties in colloidal semiconductor nanocrystals. J. Phys. Chem. B 105, 2369–2373 (2001)CrossRefGoogle Scholar
  34. 34.
    Wang, C., Shim, M., Guyot-Sionnest, P.: Electrochromic nanocrystal quantum dots. Science 291, 2390–2392 (2001)CrossRefGoogle Scholar
  35. 35.
    Wang, C., Shim, M., Guyot-Sionnest, P.: Electrochromic semiconductor nanocrystal films. Appl. Phys. Lett. 80, 4–6 (2002)CrossRefGoogle Scholar
  36. 36.
    Guyot-Sionnest, P., Wang, C.: Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films. J. Phys. Chem. B 107, 7355–7359 (2003)CrossRefGoogle Scholar
  37. 37.
    Wehrenberg, B.L., Guyot-Sionnest, P.: Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc. 125, 7806–7807 (2003)CrossRefGoogle Scholar
  38. 38.
    Haram, S.K., Quinn, B.M., Bard, A.J.: Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123, 8860–8861 (2001)CrossRefGoogle Scholar
  39. 39.
    Liu, X., Ju, H.X.: Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal. Chem. 80, 5377–5382 (2008)CrossRefGoogle Scholar
  40. 40.
    Liu, X., Jiang, H., Lei, J.P., et al.: Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal. Chem. 79, 8055–8060 (2007)CrossRefGoogle Scholar
  41. 41.
    Han, H.Y., Sheng, Z.G., Liang, J.G.: Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Anal. Chim. Acta 596, 73–78 (2007)CrossRefGoogle Scholar
  42. 42.
    Ren, T., Xu, J.Z., Tu, Y.F., et al.: Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem. Commun. 7, 5–9 (2005)CrossRefGoogle Scholar
  43. 43.
    Zou, G.Z., Ju, H.X., Ding, W.P., et al.: Electrogenerated chemiluminescence of CdSe hollow spherical assemblies in aqueous system by immobilization in carbon paste. J. Electroanal. Chem. 579, 175–180 (2005)CrossRefGoogle Scholar
  44. 44.
    Dai, Z., Zhang, J., Bao, J., et al.: Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. Mater Chem 17, 1087–1093 (2007)CrossRefGoogle Scholar
  45. 45.
    Zou, G.Z., Ju, H.X.: Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal. Chem. 76, 6871–6876 (2004)CrossRefGoogle Scholar
  46. 46.
    Bae, Y., Lee, D.C., Rhogojina, E.V., et al.: Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution. Nanotechnology 17, 3791–3797 (2006)CrossRefGoogle Scholar
  47. 47.
    Shan, Y., Xu, J.J., Chen, H.Y.: Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem. Commun. 8, 905–907 (2009)CrossRefGoogle Scholar
  48. 48.
    Liang, G., Li, L., Liu, H., et al.: Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chem. Commun. 46, 2974–2976 (2010)CrossRefGoogle Scholar
  49. 49.
    Mei, Y.L., Wang, H.S., Li, Y.F., et al.: Electrochemiluminescence of CdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis 22, 155–160 (2010)CrossRefGoogle Scholar
  50. 50.
    Jie, G.F., Liu, B., Miao, J.J., et al.: Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta 71, 1476–1480 (2007)CrossRefGoogle Scholar
  51. 51.
    Miao, J.J., Ren, T., Dong, L., et al.: Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes with electrogenerated chemiluminescence. Small 1, 802–805 (2005)CrossRefGoogle Scholar
  52. 52.
    Omer, K.M., Bard, A.J.: Electrogenerated chemiluminescence of aromatic hydrocarbon nanoparticles in an aqueous solution. J. Phys. Chem. C 113, 11575–11578 (2009)CrossRefGoogle Scholar
  53. 53.
    Zhou, B., Liu, B., Jiang, L., et al.: Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes with electrogenerated chemiluminescence. Ultrason. Sonochem. 14, 229–234 (2007)CrossRefGoogle Scholar
  54. 54.
    Chang, Y., Palacios, R.E., Fan, F., et al.: Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130, 8906–8907 (2008)CrossRefGoogle Scholar
  55. 55.
    Chang, M.M., Saji, T., Bard, A.J.: Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J. Am. Chem. Soc. 99, 5399–5403 (1977)CrossRefGoogle Scholar
  56. 56.
    Smith, P.J., Mann, C.K.: Electrochemical dealkylation of aliphatic amines. J. Org. Chem. 34, 1821–1826 (1969)CrossRefGoogle Scholar
  57. 57.
    Zhang, L.H., Zou, X.Q., Ying, E., et al.: Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J. Phys. Chem. C 112, 4451–4455 (2008)CrossRefGoogle Scholar
  58. 58.
    Jiang, H., Wang, X.M.: Anodic electrochemiluminescence of CdSe nanoparticles coreacted with tertiary amine and halide induced quenching effect. Electrochem. Commun. 11, 1207–1210 (2009)CrossRefGoogle Scholar
  59. 59.
    White, H.S., Bard, A.J.: Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)32+-S2O82− system in acetonitrile-water solutions. J. Am. Chem. Soc. 104, 6891–6895 (1982)CrossRefGoogle Scholar
  60. 60.
    Jie, G.F., Liu, B., Pan, H.C., et al.: CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal. Chem. 79, 5574–5581 (2007)CrossRefGoogle Scholar
  61. 61.
    Jie, G.F., Huang, H.P., Sun, X.L., et al.: Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens. Bioelectron. 23, 1896–1899 (2008)CrossRefGoogle Scholar
  62. 62.
    Liu, B., Ren, T., Zhang, J., et al.: Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water. Electrochem. Commun. 9, 551–557 (2007)CrossRefGoogle Scholar
  63. 63.
    Hua, L.J., Han, H.Y., Zhang, X.J.: Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Talanta 77, 1654–1659 (2009)CrossRefGoogle Scholar
  64. 64.
    Wang, X.F., Xu, J.J., Chen, H.Y.: A new electrochemiluminescence emission of Mn2+-doped ZnS nanocrystals in aqueous solution. J. Phys. Chem. C 112, 17581–17585 (2008)CrossRefGoogle Scholar
  65. 65.
    Wang, X.F., Zhou, Y., Xu, J.J., et al.: Signal-on electrochemiluminescence biosensors based on CdS–carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009)CrossRefGoogle Scholar
  66. 66.
    Wang, C., Yifeng, E., Fan, L., et al.: Directed assembly of hierarchical CdS nanotube arrays from CdS nanoparticles: enhanced solid state electro-chemiluminescence in H2O2 solution. Adv. Mater. 19, 3677–3681 (2007)CrossRefGoogle Scholar
  67. 67.
    Ding, S.N., Xu, J.J., Chen, H.Y.: Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem. Commun. 34, 3631–3633 (2006)CrossRefGoogle Scholar
  68. 68.
    Shi, C.G., Xu, J., Chen, H.: Electrogenerated chemiluminescence and electrochemical bi-functional sensors for H2O2 based on CdS nanocrystals/hemoglobin multilayers. J. Electroanal. Chem. 610, 186–192 (2007)CrossRefGoogle Scholar
  69. 69.
    Cheng, L., Liu, X., Lei, J., et al.: Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal. Chem. 82, 3359–3364 (2010)CrossRefGoogle Scholar
  70. 70.
    Lin, Z., Liu, Y., Chen, G.: TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem. Commun 10, 1629–1632 (2008)CrossRefGoogle Scholar
  71. 71.
    Hu, X., Han, H., Hua, L.: Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide. Biosens. Bioelectron. 25, 1843–1846 (2010)CrossRefGoogle Scholar
  72. 72.
    Poznyak, S.K., Talapin, D.V., Shevchenko, E.V., et al.: Quantum dot chemiluminescence. Nano Lett. 4, 693–698 (2004)CrossRefGoogle Scholar
  73. 73.
    Hua, L., Han, H., Chen, H.: Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole. Electrochim. Acta 54, 1389–1394 (2009)CrossRefGoogle Scholar
  74. 74.
    Wang, Y., Lu, J., Tang, L., et al.: Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal. Chem. 81, 9710–9715 (2009)CrossRefGoogle Scholar
  75. 75.
    Jie, G., Li, L., Chen, C., et al.: Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron. 24, 3352–3358 (2009)CrossRefGoogle Scholar
  76. 76.
    Jie, G., Zhang, J., Wang, D., et al.: Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal. Chem. 80, 4033–4039 (2008)CrossRefGoogle Scholar
  77. 77.
    Wang, C., Yifeng, E., Fan, L., et al.: CdS-Ag nanocomposite arrays: enhanced electro-chemiluminescence but quenched photoluminescence. J. Mater. Chem. 19, 3841–3846 (2009)CrossRefGoogle Scholar
  78. 78.
    Guo, L., Liu, X., Hu, Z., et al.: Electrochemiluminescence of CdSe quantum dots composited with nitrogen-doped carbon nanotubes. Electroanalysis 21, 2495–2498 (2009)CrossRefGoogle Scholar
  79. 79.
    Liu, X., Cheng, L.X., Lei, J.P., et al.: Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. Analyst 133, 1161–1163 (2008)CrossRefGoogle Scholar
  80. 80.
    Liu, X., Guo, L., Cheng, L., et al.: Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta 78, 691–694 (2009)CrossRefGoogle Scholar
  81. 81.
    Zhang, L., Shang, L., Dong, S.: Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem. Commun. 10, 1452–1454 (2008)CrossRefGoogle Scholar
  82. 82.
    Hua, L., Zhou, J., Han, H.: Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim. Acta 55, 1265–1271 (2010)CrossRefGoogle Scholar
  83. 83.
    Han, H., You, Z., Liang, J., et al.: Electrogenerated chemiluminescence of CdSe quantum dots dispersed in aqueous solution. Front. Biosci 12, 2352–2357 (2007)CrossRefGoogle Scholar
  84. 84.
    Hua, L.J., Han, H.Y., Lu, D.L.: A novel method for the determination of L-cysteine, based on the electrochemiluminescence of CdTe quantum dots. Luminescence 23, 72–73 (2008)Google Scholar
  85. 85.
    Jiang, H., Ju, H.X.: Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem. Commun. 4, 404–406 (2007)CrossRefGoogle Scholar
  86. 86.
    Huang, H., Zhu, J.: DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens. Bioelectron. 25, 927–930 (2009)CrossRefGoogle Scholar
  87. 87.
    Hu, X., Wang, R., Ding, Y., et al.: Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta 80, 1737–1743 (2010)CrossRefGoogle Scholar
  88. 88.
    Huang, H., Tan, Y., Shi, J., et al.: DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2, 606–612 (2010)CrossRefGoogle Scholar
  89. 89.
    Huang, H., Jie, G., Cui, R., et al.: DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochem. Commun. 11, 816–818 (2009)CrossRefGoogle Scholar
  90. 90.
    Liu, X., Lei, J.P., Cheng, L.X., Liu, H., Ju, H.X.: Surface trap of quantum dots by bidentate chelation for low-potential electrochemiluminescent biosensing. Chem. Eur. J. 16, 10764–10770 (2010)CrossRefGoogle Scholar
  91. 91.
    Liu, X., Zhang, Y.Y., Lei, J.P., Xue, Y.D., Cheng, L.X., Ju, H.X.: Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal. Chem. 82, 7351–7356 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingP.R. China
  2. 2.World Precision Instruments, Inc.SarasotaUSA
  3. 3.University of Science & TechnologyBeijingP.R. China
  4. 4.University of CaliforniaSan DiegoUSA

Personalised recommendations