Skip to main content

Electrochemical Biosensing Based on Carbon Nanotubes

  • Chapter
  • First Online:
NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2300 Accesses

Abstract

Since their discovery, carbon nanotubes (CNTs) have been extensively investigated as essential platforms in constructing electrochemical biosensors. CNTs can be classified into two basic varieties: single-wall carbon nanotubes (SWCNTs), which are a single layer of graphene sheet rolled into cylindrical tubes, and multiwall carbon nanotubes (MWCNTs) comprised of multiple layers of concentric cylinders with a spacing of about 0.34 nm between the adjacent cyclinders (Fig. 7.1). The lengths of the nanotubes can range from several hundred nanometers to several micrometers, and the diameters from 0.2–2 nm for SWCNTs and from 2 to 100 nm for MWCNTs [1]. CNT synthesis techniques can be classified into three major categories: laser ablation, catalytic arc discharge, and chemical vapor deposition [2]. Due to the diameters being similar to or smaller than those of individual biomolecules, CNTs are expected to serve as high-performance electrical conduits for interfacing with biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, S.N., Rusling, J.F., Papadimitrakopoulos, F.: Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007)

    Article  CAS  Google Scholar 

  2. Rao, C.N.R., Govindaraj, A.: Carbon nanotubes from organometallic precursors. Acc. Chem. Res. 35, 998–1007 (2002)

    Article  CAS  Google Scholar 

  3. Wang, J., Lin, Y.H.: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal. Chem. 27, 619–626 (2008)

    Article  CAS  Google Scholar 

  4. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)

    Article  CAS  Google Scholar 

  5. Yang, R.H., Tang, Z.W., Yan, J.L., et al.: Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal. Chem. 80, 7408–7413 (2008)

    Article  CAS  Google Scholar 

  6. Mazzei, F., Favero, G., Frasconi, M., et al.: Electron-transfer kinetics of microperoxidase-11 covalently immobilised onto the surface of multi-walled carbon nanotubes by reactive landing of mass-selected ions. Chem. Eur. J. 15, 7359–7367 (2009)

    Article  CAS  Google Scholar 

  7. Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X.M., et al.: Noncovalent functionalization of carbon nanotubes by fluorescein−polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129, 2448–2449 (2007)

    Article  CAS  Google Scholar 

  8. Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., et al.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. 100, 4984–4989 (2003)

    Article  CAS  Google Scholar 

  9. Chen, R.J., Zhang, Y.G., Wang, D.W., et al.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Article  CAS  Google Scholar 

  10. Zhao, Y.L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)

    Article  CAS  Google Scholar 

  11. Ehli, C., Rahman, G.M.A., Jux, N., et al.: Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J. Am. Chem. Soc. 128, 11222–11231 (2006)

    Article  CAS  Google Scholar 

  12. Hasobe, T., Fukuzumi, S., Kamat, P.V.: Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005)

    Article  CAS  Google Scholar 

  13. Tu, W.W., Lei, J.P., Ju, H.X.: Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive biosensing of trichloroacetic acid. Chem. Eur. J. 15, 779–784 (2009)

    Article  CAS  Google Scholar 

  14. Wang, J., Musameh, M., Lin, Y.H.: Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408–2409 (2003)

    Article  CAS  Google Scholar 

  15. Lyons, M.E.G., Keeley, G.P., et al.: Immobilized enzyme – single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chem. Commun. 22, 2529–2531 (2008)

    Article  CAS  Google Scholar 

  16. Hu, P., Huang, C.Z., Li, Y.F., et al.: Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization. Anal. Chem. 80, 1819–1823 (2008)

    Article  CAS  Google Scholar 

  17. Zheng, M., Jagota, A., Semke, E.D., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  CAS  Google Scholar 

  18. Zhao, W.A., Gao, Y., Brook, M.A., et al.: Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification. Chem. Commun. 34, 3582–3584 (2006)

    Article  CAS  Google Scholar 

  19. Ma, Y.F., Ali, S.R., Dodoo, A.S., et al.: Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J. Phys. Chem. B 110, 16359–16365 (2006)

    Article  CAS  Google Scholar 

  20. Wang, H.S., Li, T.H., Jia, W.L., et al.: Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens. Bioelectron. 22, 664–669 (2006)

    Article  CAS  Google Scholar 

  21. Joshi, P.P., Merchant, S.A., Wang, Y.D., et al.: Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem. 77, 3183–3188 (2005)

    Article  CAS  Google Scholar 

  22. Tsai, T.W., Heckert, G., Neves, L.F., et al.: Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal. Chem. 81, 7917–7925 (2009)

    Article  CAS  Google Scholar 

  23. Cui, H.F., Ye, J.S., Zhang, W.D., et al.: Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Biosens. Bioelectron. 24, 1723–1729 (2009)

    Article  CAS  Google Scholar 

  24. Luo, X.L., Xu, J.J., Wang, J.L., et al.: Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)

    Article  CAS  Google Scholar 

  25. Zhang, M.G., Mullens, C., Gorski, W.: Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Anal. Chem. 79, 2446–2450 (2007)

    Article  CAS  Google Scholar 

  26. Zhang, M.G., Smith, A., Gorski, W.: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004)

    Article  CAS  Google Scholar 

  27. Kandimalla, V.B., Ju, H.X.: Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem. Eur. J. 12, 1074–1080 (2006)

    Article  CAS  Google Scholar 

  28. Liu, Z., Winters, M., Holodniy, M., et al.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)

    Article  CAS  Google Scholar 

  29. Richard, C., Balavoine, F., Schultz, P., et al.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003)

    Article  CAS  Google Scholar 

  30. Niyogi, S., Densmore, C.G., Doorn, S.K.: Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 1144–1153 (2009)

    Article  CAS  Google Scholar 

  31. Arnold, M.S., Guler, M.O., Hersam, M.C., et al.: Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21, 4705–4709 (2005)

    Article  CAS  Google Scholar 

  32. Kandimalla, V.B., Tripathi, V.S., Ju, H.X.: A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 27, 1167–1174 (2006)

    Article  CAS  Google Scholar 

  33. Tripathi, V.S., Kandimalla, V.B., Ju, H.X.: Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens. Bioelectron. 21, 1529–1535 (2006)

    Article  CAS  Google Scholar 

  34. Yang, J., Jiao, K., Yang, T.: A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment. Anal. Bioanal. Chem. 389, 913–921 (2007)

    Article  CAS  Google Scholar 

  35. Xiao, F., Zhao, F.Q., Mei, D.P., et al.: Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M  =  Ru, Pd and Au) nanoparticles on carbon nanotubes – ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009)

    Article  CAS  Google Scholar 

  36. Meng, L., Jin, J., Yang, G.X., et al.: Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 81, 7271–7280 (2009)

    Article  CAS  Google Scholar 

  37. Lin, X.Q., Li, Y.X.: A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens. Bioelectron. 22, 253–259 (2006)

    Article  CAS  Google Scholar 

  38. Khalap, V.R., Sheps, T., Kane, A.A., et al.: Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett. 10, 896–901 (2010)

    Article  CAS  Google Scholar 

  39. Zhang, H., Cui, H.: Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25, 2604–2612 (2009)

    Article  CAS  Google Scholar 

  40. Yang, M.H., Yang, Y., Yang, H.F., et al.: Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials 27, 246–255 (2006)

    Article  CAS  Google Scholar 

  41. Lee, S.W., Kim, B.S., Chen, S., et al.: Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009)

    Article  CAS  Google Scholar 

  42. Wang, Y.D., Joshi, P.P., Hobbs, K.L., et al.: Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22, 9776–9783 (2006)

    Article  CAS  Google Scholar 

  43. Hamilton, C.E., Ogrin, D., McJilton, L., et al.: Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters. Dalton Trans. 22, 2937–2944 (2008)

    Article  CAS  Google Scholar 

  44. Holzinger, M., Vostrowsky, O., Hirsch, A., et al.: Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40, 4002–4005 (2001)

    Article  CAS  Google Scholar 

  45. Bahr, J.L., Yang, J., Kosynkin, D.V., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001)

    Article  CAS  Google Scholar 

  46. Ju, S.Y., Papadimitrakopoulos, P.: Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 655–664 (2008)

    Article  CAS  Google Scholar 

  47. Williams, K.A., Veenhuizen, P.T.M., de la Torre, B.G., et al.: Carbon nanotubes with DNA recognition. Nature 420, 761 (2002)

    Article  CAS  Google Scholar 

  48. Xiang, L., Zhang, Z.N., Yu, P., et al.: In situ cationic ring-opening polymerization and quaternization reactions to confine ferricyanide onto carbon nanotubes: a general approach to development of integrative nanostructured electrochemical biosensors. Anal. Chem. 80, 6587–6593 (2008)

    Article  CAS  Google Scholar 

  49. Gong, K.P., Du, F., Xia, Z.H., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  CAS  Google Scholar 

  50. Carrero-Sánchez, J.C., Elías, A.L., Mancilla, R., et al.: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609–1616 (2006)

    Article  CAS  Google Scholar 

  51. Tu, W.W., Lei, J.P., Jian, G.Q., et al.: Noncovalent axial assembly of picket-fence porphyrin on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing. Chem. Eur. J. 16, 4120–4126 (2010)

    Article  CAS  Google Scholar 

  52. Alonso-Lomillo, M.A., Rüdiger, O., Maroto-Valiente, A., et al.: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7, 1603–1608 (2007)

    Article  CAS  Google Scholar 

  53. Cheng, W., Ding, L., Lei, J.P., et al.: Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal. Chem. 80, 3867–3872 (2008)

    Article  CAS  Google Scholar 

  54. Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43, 2113–2117 (2004)

    Article  CAS  Google Scholar 

  55. Zhang, Y.J., Li, J., Shen, Y.F., et al.: Poly-L-lysine functionalization of single-walled carbon nanotubes. J. Phys. Chem. B 108, 15343–15346 (2004)

    Article  CAS  Google Scholar 

  56. Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Article  CAS  Google Scholar 

  57. Aziz, M.A., Park, S., Jon, S., et al.: Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)–silane copolymer. Chem. Commun. 25, 2610–2612 (2007)

    Article  CAS  Google Scholar 

  58. Yu, X., Munge, B., Patel, V., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)

    Article  CAS  Google Scholar 

  59. Lai, G.S., Yan, F., Ju, H.X.: Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81, 9730–9736 (2009)

    Article  CAS  Google Scholar 

  60. Wu, Z., Zhen, Z., Jiang, J.H., et al.: Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J. Am. Chem. Soc. 131, 12325–12332 (2009)

    Article  CAS  Google Scholar 

  61. Nie, H.G., Liu, S.J., Yu, R.Q., et al.: Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew. Chem. Int. Ed. 48, 9862–9866 (2009)

    Article  CAS  Google Scholar 

  62. Zhang, M.G., Gorski, W.: Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 127, 2058–2059 (2005)

    Article  CAS  Google Scholar 

  63. Ye, Y.K., Ju, H.X.: Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron. 21, 735–741 (2005)

    Article  CAS  Google Scholar 

  64. Wang, S.G., Wang, R.L., Sellin, P.J., et al.: DNA biosensors based on self-assembled carbon nanotubes. Biochem. Biophys. Res. Commun. 325, 1433–1437 (2004)

    Article  CAS  Google Scholar 

  65. Zhang, Y., Kim, H., Heller, A.: Enzyme-amplified amperometric detection of 3000 copies of DNA in a 10-μL droplet at 0.5 fM concentration. Anal. Chem. 75, 3267–3269 (2003)

    Article  CAS  Google Scholar 

  66. Munge, B., Liu, G.D., Collins, G., et al.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)

    Article  CAS  Google Scholar 

  67. Yang, T., Zhou, N., Zhang, Y.C.: Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens. Bioelectron. 24, 2165–2170 (2009)

    Article  CAS  Google Scholar 

  68. Zhang, W., Yang, T., Zhuang, X.M., et al.: An ionic liquid supported CeO2 nanoshuttles – carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens. Bioelectron. 24, 2417–2422 (2009)

    Article  CAS  Google Scholar 

  69. Mahmoud, K.A., Hrapovic, S., Luong, J.H.T.: Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano 2, 1051–1057 (2008)

    Article  CAS  Google Scholar 

  70. Viswanathan, S., Wu, L.C., Huang, M.R., et al.: Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem. 78, 1115–1121 (2006)

    Article  CAS  Google Scholar 

  71. Viswanathan, S., Rani, C., Anand, A.V., et al.: Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens. Bioelectron. 24, 1984–1989 (2009)

    Article  CAS  Google Scholar 

  72. Ly, S.Y., Cho, N.S.: Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor. J. Clin. Virol. 44, 43–47 (2009)

    Article  CAS  Google Scholar 

  73. Drouvalakis, K.A., Bangsaruntip, S., Hueber, W., et al.: Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens. Bioelectron. 23, 1413–1421 (2008)

    Article  CAS  Google Scholar 

  74. Okuno, J., Maehashi, K., Kerman, K., et al.: Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron. 22, 2377–2381 (2007)

    Article  CAS  Google Scholar 

  75. Kim, J.P., Lee, B.Y., Lee, J., et al.: Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 3372–3378 (2009)

    Article  CAS  Google Scholar 

  76. Chikkaveeraiah, B.V., Bhirde, A., Malhotra, R.: Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem. 81, 9129–9134 (2009)

    Article  CAS  Google Scholar 

  77. Sudibya, H.G., Ma, J.M., Dong, X.C., et al.: Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 48, 2723–2726 (2009)

    Article  CAS  Google Scholar 

  78. Huang, Y.X., Sudibya, H.G., Fu, D.L., et al.: Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosens. Bioelectron. 24, 2716–2720 (2009)

    Article  CAS  Google Scholar 

  79. Cheng, W., Ding, L., Ding, S.J., et al.: A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 48, 6465–6468 (2009)

    Article  CAS  Google Scholar 

  80. Ishikawa, F.N., Stauffer, B., Caron, D.A., et al.: Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors. Biosens. Bioelectron. 24, 2967–2972 (2009)

    Article  CAS  Google Scholar 

  81. Galanzha, E.I., Shashkov, E.V., Kelly, T., et al.: In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009)

    Article  CAS  Google Scholar 

  82. Tu, W.W., Lei, J.P., Ju, H.X.: Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem. Commun. 10, 766–769 (2008)

    Article  CAS  Google Scholar 

  83. Du, F.Y., Huang, W.H., Shi, Y.X., et al.: Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosens. Bioelectron. 24, 415–421 (2008)

    Article  CAS  Google Scholar 

  84. Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    Article  CAS  Google Scholar 

  85. Wang, Z.Y., Liu, S.N., Wu, P., et al.: Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem 81, 1638–1645 (2009)

    Article  CAS  Google Scholar 

  86. Shan, C.S., Yang, H.F., Song, J.F., et al.: Direct electrochemistry of glucose oxidase and biosensing for glucose based on grapheme. Anal. Chem. 81, 2378–2382 (2009)

    Article  CAS  Google Scholar 

  87. Liu, Z., Wang, J., Xie, D.H., et al.: Polyaniline-coated Fe3O4 nanoparticle – carbon-nanotube composite and its application in electrochemical biosensing. Small 4, 462–466 (2008)

    Article  CAS  Google Scholar 

  88. Rakhi, R.B., Sethupathi, K., Ramaprabhu, S.: A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B 113, 3190–3194 (2009)

    Article  CAS  Google Scholar 

  89. Hrapovic, S., Liu, Y.L., Male, K.B., et al.: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083–1088 (2004)

    Article  CAS  Google Scholar 

  90. Liu, Q., Lu, X.B., Li, J., et al.: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 22, 3203–3209 (2007)

    Article  CAS  Google Scholar 

  91. Jeykumari, D.R.S., Narayanan, S.S.: Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens. Bioelectron. 23, 1686–1693 (2008)

    Article  CAS  Google Scholar 

  92. Zhu, L.D., Yang, R.L., Zhai, J.L., et al.: Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 23, 528–535 (2007)

    Article  CAS  Google Scholar 

  93. Liu, C.Y., Hu, J.M.: Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron. 24, 2149–2154 (2009)

    Article  CAS  Google Scholar 

  94. Zou, Y.J., Sun, L.X., Xu, F.: Biosensor based on polyaniline – Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens. Bioelectron. 22, 2669–2674 (2007)

    Article  CAS  Google Scholar 

  95. Kachoosangi, R.T., Musameh, M.M., Abu-Yousef, I., et al.: Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem. 81, 435–442 (2009)

    Article  CAS  Google Scholar 

  96. Nossol, E., Zarbin, A.J.G.A.: Simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv. Funct. Mater. 19, 3980–3986 (2009)

    Article  CAS  Google Scholar 

  97. Beitollahi, H., Karimi-Maleh, H., Khabazzadeh, H.: Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl- 3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 80, 9848–9851 (2008)

    Article  CAS  Google Scholar 

  98. Heller, I., Männik, J., Lemay, S.G., et al.: Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. Nano Lett. 9, 377–382 (2009)

    Article  CAS  Google Scholar 

  99. Heller, I., Janssens, A.M., Männik, J., et al.: Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008)

    Article  CAS  Google Scholar 

  100. Hecht, D.S., Ramirez, R.J.A., Briman, M., et al.: Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett. 6, 2031–2036 (2006)

    Article  CAS  Google Scholar 

  101. Chen, R.J., Choi, H.C., Bangsaruntip, S., et al.: An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126, 1563–1568 (2004)

    Article  CAS  Google Scholar 

  102. Besteman, K., Lee, J.O., Wiertz, F.G.M., et al.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003)

    Article  CAS  Google Scholar 

  103. Boussaad, S., Diner, B.A., Fan, J.: Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing. J. Am. Chem. Soc. 130, 3780–3787 (2008)

    Article  CAS  Google Scholar 

  104. Byon, H.R., Choi, H.C.: Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 128, 2188–2189 (2006)

    Article  CAS  Google Scholar 

  105. Zhang, Y.B., Kanungo, M., Ho, A.J., et al.: Functionalized carbon nanotubes for detecting viral proteins. Nano Lett. 7, 3086–3091 (2007)

    Article  CAS  Google Scholar 

  106. Kim, J.P., Lee, B.Y., Hong, S., et al.: Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 381, 193–198 (2008)

    Article  CAS  Google Scholar 

  107. Maehashi, K., Katsura, T., Kerman, K., et al.: Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79, 782–787 (2007)

    Article  CAS  Google Scholar 

  108. Martínez, M.T., Tseng, Y.C., Ormategui, N., et al.: Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9, 530–536 (2009)

    Article  CAS  Google Scholar 

  109. So, H.M., Park, D.W., Jeon, E.K., et al.: Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4, 197–201 (2008)

    Article  CAS  Google Scholar 

  110. Tang, X.W., Bansaruntip, S., Nakayama, N., et al.: Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–1636 (2006)

    Article  CAS  Google Scholar 

  111. Star, A., Tu, E., Niemann, J., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. 103, 921–926 (2006)

    Article  CAS  Google Scholar 

  112. So, H.M., Won, K., Kim, Y.H., et al.: Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906–11907 (2005)

    Article  CAS  Google Scholar 

  113. Gui, E.L., Li, L.J., Zhang, K.K., et al.: DNA sensing by field-effect transistors based on networks of carbon nanotubes. J. Am. Chem. Soc. 129, 14427–14432 (2007)

    Article  CAS  Google Scholar 

  114. Withey, G.D., Lazareck, A.D., Tzolov, M.B., et al.: Ultra-high redox enzyme signal transduction using highly ordered carbon nanotube array electrodes. Biosens. Bioelectron. 21, 1560–1565 (2006)

    Article  CAS  Google Scholar 

  115. Yu, X., Chattopadhyay, D., Galeska, I., et al.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5, 408–411 (2003)

    Article  CAS  Google Scholar 

  116. O’Connor, M., Kim, S.N., Killard, A.J., et al.: Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst 129, 1176–1180 (2004)

    Article  CAS  Google Scholar 

  117. Zhang, X.Z., Jiao, K., Liu, S.F., et al.: Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81, 6006–6012 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Electrochemical Biosensing Based on Carbon Nanotubes. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_7

Download citation

Publish with us

Policies and ethics