Skip to main content

Biosensors Based on Nanoporous Materials

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

According to the International Union of Pure and Applied Chemistry (IUPAC) definition, porous materials are divided into three classes: microporous (<2 nm), mesoporous (2–50 nm), and macroporous (>50 nm). When the pore dimension is in the nanometer range, such materials can be denoted as ­nanoporous materials [1]. Recently, nanoporous materials have found increasing applications in many areas, including bioengineering [2], catalysis [3], and biosensing [4], due to their large surface area, tailored pore size distribution, controllable pore structure, and versatile composition. Especially for biosensors, the use of ­nanoporous materials can significantly improve the analysis performance of the biosensors since their large surface area and versatile porous structure are beneficial for the loading of large amounts of active catalysts and they have a fast diffusion rate. In fact, various kinds of biosensors have been designated and fabricated on the basis of nanoporous materials [5–10] in the past decade and used for the detection of various biocomponents, including glucose, DNA, antibodies, and bacteria, with improved sensitivity. The composition of the nanoporous materials is versatile [11–16], including­ silica, ­carbon, metal, metal oxide, and hybrid composition. In addition, their applications cover both the electrochemical [11–16] and optical fields [17, 18].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schüth, F.: Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 42, 3604–3622 (2003)

    Article  CAS  Google Scholar 

  2. Yang, X.Y., Li, Z.Q., Liu, B., et al.: “Fish-in-net” encapsulation of enzymes in macroporous cages as stable, reusable, and active heterogeneous biocatalysts. Adv. Mater. 18, 410–414 (2006)

    Article  CAS  Google Scholar 

  3. Wan, Y., Wang, H.Y., Zhao, Q.F., et al.: Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. J. Am. Chem. Soc. 131, 4541–4545 (2009)

    Article  CAS  Google Scholar 

  4. Wu, S., Ju, H.X., Liu, Y., et al.: Conductive mesocellular silica–carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Adv. Funct. Mater. 17, 585–592 (2007)

    Article  CAS  Google Scholar 

  5. Qiu, H.J., Xue, L.Y., Ji, G.L., et al.: Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron. 24, 3014–3018 (2009)

    Article  CAS  Google Scholar 

  6. Yang, Z.P., Si, S.H., Dai, H.J., et al.: Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens. Bioelectron. 22, 3283–3287 (2007)

    Article  CAS  Google Scholar 

  7. Elyacoubia, A., Zayeda, S.I.M., Blankert, B., et al.: Development of an amperometric enzymatic biosensor based on gold modified magnetic nanoporous microparticles. Electroanalysis 18, 345–350 (2006)

    Article  CAS  Google Scholar 

  8. Dai, Z.H., Liu, K., Tang, Y.W., et al.: A novel tetragonal pyramid-shaped porous ZnO nanostructure and its application in the biosensing of horseradish peroxidase. J. Mater. Chem. 18, 1919–1926 (2008)

    Article  CAS  Google Scholar 

  9. Yang, Q.Y., Liang, Y., Zhou, T.S., et al.: Electrochemical investigation of platinum-coated gold nanoporous film and its application for Escherichia coli rapid measurement. Electrochem. Commun. 11, 893–896 (2009)

    Article  CAS  Google Scholar 

  10. Guo, H.S., He, N.Y., Ge, S.X., et al.: Molecular sieves materials modified carbon paste electrodes for the determination of cardiac troponin I by anodic stripping voltammetry. Micropor. Mesopor. Mat. 85, 89–95 (2005)

    Article  CAS  Google Scholar 

  11. Dai, Z.H., Liu, S.Q., Ju, H.X.: Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing. Electrochim. Acta 49, 2139–2144 (2004)

    Article  CAS  Google Scholar 

  12. Sotiropoulou, S., Chaniotakis, N.A.: Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix. Anal. Chim. Acta 530, 199–204 (2005)

    Article  CAS  Google Scholar 

  13. Zhang, X.Y., Li, D., Bourgeois, L., et al.: Direct electrodeposition of porous gold nanowire arrays for biosensing applications. Chem. Phys. Chem. 10, 436–441 (2009)

    CAS  Google Scholar 

  14. Wu, S., Wu, J., Liu, Y.Y., et al.: Conductive and highly catalytic nanocage for assembly and improving function of enzyme. Chem. Mater. 20, 1397–1403 (2008)

    Article  CAS  Google Scholar 

  15. Wu, S., Liu, Y.Y., Wu, J., et al.: Prussian blue nanoparticles doped nanocage for controllable immobilization and selective biosensing of enzyme. Electrochem. Commun. 10, 397–401 (2008)

    Article  CAS  Google Scholar 

  16. Jia, N.Q., Wen, Y.L., Yang, G.F., et al.: Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix. Electrochem. Commun. 10, 774–777 (2008)

    Article  CAS  Google Scholar 

  17. Jane, A., Dronov, R., Hodges, A., et al.: Porous silicon biosensors on the advance. Trends Biotechnol. 27, 230–239 (2009)

    Article  CAS  Google Scholar 

  18. Canham, L.T., Cullis, A.G.: Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991)

    Article  Google Scholar 

  19. Dai, Z.H., Liu, S.Q., Ju, H.X., et al.: Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron. 19, 861–867 (2004)

    Article  CAS  Google Scholar 

  20. Yantasee, W., Lin, Y.H., Zemanian, T.S., et al.: Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst 128, 467–472 (2003)

    Article  CAS  Google Scholar 

  21. Yantasee, W., Lin, Y.H., Li, X.H., et al.: Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized with thiol-terminated monolayer. Analyst 128, 899–904 (2003)

    Article  CAS  Google Scholar 

  22. Rohlfing, D.F., Rathouskỳ, J., Rohlfing, Y., et al.: Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 21, 11320–11329 (2005)

    Article  CAS  Google Scholar 

  23. Furukawa, H., Hibino, M., Zhou, H.S., et al.: Synthesis of mesoporous carbon-containing ferrocene derivative and its electrochemical property. Chem. Lett. 32, 132–133 (2003)

    Article  CAS  Google Scholar 

  24. Gill, I.: Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem. Mater. 13, 3404–3421 (2001)

    Article  CAS  Google Scholar 

  25. Wang, B., Li, B., Deng, Q., et al.: Amperometric glucose biosensor based on sol − gel organic − inorganic hybrid material. Anal. Chem. 70, 3170–3174 (1998)

    Article  CAS  Google Scholar 

  26. Kandimalla, V.B., Tripathi, V.S., Ju, H.X.: Immobilization of biomolecules in sol-gels: biological and analytical applications. Crit. Rev. Anal. Chem. 36, 73–106 (2006)

    Article  CAS  Google Scholar 

  27. Khan, M.A., Al-Jalal, A.A., Bakhtiari, I.A.: Decoking of a coked zeolite catalyst in a glow discharge. Anal. Bioanal. Chem. 378, 89–96 (2004)

    Article  CAS  Google Scholar 

  28. Fernandez-Lafuente, R., Rodriguez, V., Guisan, J.M., et al.: The coimmobilization of D-amino acid oxidase and catalase enables the quantitative transformation of D-amino acids (D-phenylalanine) into alpha-keto acids (phenylpyruvic acid). Enzyme Microb Tech 23, 28–33 (1998)

    Article  CAS  Google Scholar 

  29. Gupta, M.N.: Thermostabilization of proteins. Biotechnol. Appl. Biochem. 14, 1–11 (1991)

    Google Scholar 

  30. Klibanov, A.M.: Immobilized enzymes and cells as practical catalysts. Science 219, 722–727 (1983)

    Article  CAS  Google Scholar 

  31. Sun, H., Hu, N.F., Ma, H.Y.: Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes. Electroanalysis 12, 1064–1070 (2000)

    Article  CAS  Google Scholar 

  32. Ciureanu, M., Goldstein, S., Mateescu, M.A.: Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodes. J. Electrochem. Soc. 145, 533–541 (1998)

    Article  CAS  Google Scholar 

  33. Huang, Q.D., Lu, Z.Q., Rusling, J.F.: Composite films of surfactants, Nafion, and proteins with electrochemical and enzyme activity. Langmuir 12, 5472–5480 (1996)

    Article  CAS  Google Scholar 

  34. Yang, J., Hu, N., Rusling, J.F.: Enhanced electron transfer for hemoglobin in poly (ester ­sulfonic acid) films on pyrolytic graphite electrodes. J. Electroanal. Chem. 463, 53–62 (1999)

    Article  CAS  Google Scholar 

  35. Dave, B.C., Dunn, B., Valentine, J.S., et al.: Sol-gel encapsulation methods for biosensors. Anal. Chem. 66, A1120–A1127 (1994)

    Article  Google Scholar 

  36. Weetall, H.H.: Preparation of immobilized proteins covalently coupled through silane ­coupling agents to inorganic supports. Appl. Biochem. Biotechnol. 41, 157–188 (1993)

    Article  CAS  Google Scholar 

  37. Avnir, D., Braun, S., Lev, O., et al.: Enzymes and other proteins entrapped in sol-gel ­materials. Chem. Mater. 6, 1605–1614 (1994)

    Article  CAS  Google Scholar 

  38. Kresge, C.T., Leonowicz, M.E., Roth, W.J.: Ordered mesoporous molecular-sieves synthesized by a liquid crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  39. Beck, J.S., Vartuli, J.C., Roth, W.J., et al.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  40. Fan, J., Zhao, D.Y.: PhD thesis, Template synthesis of novel mesoporous materials and their applications in the biological field and battery. Fudan University, p. 20 (2004)

    Google Scholar 

  41. Schmidt-Winkel, P., Lukens, W.W., Yang, P.D., et al.: Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater. 12, 686–696 (2000)

    Article  CAS  Google Scholar 

  42. Deere, J., Magner, E., Wall, J.G., et al.: Adsorption and activity of proteins onto mesoporous silica. Catal. Lett. 85, 19–23 (2003)

    Article  CAS  Google Scholar 

  43. Gimon-Kinsed, M.E., Jimenez, V.I., Washmon, L., et al.: Mesoporous molecular sieve immobilized enzymes. Mesopor. Mol. Siev. 117, 373–380 (1998)

    Google Scholar 

  44. Chong, A.S.M., Zhao, X.S.: Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catal. Today 93–95, 293–299 (2004)

    Article  CAS  Google Scholar 

  45. Lee, J., Lee, D., Oh, E., et al.: Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. Int. Ed. 44, 7427–7432 (2005)

    Article  CAS  Google Scholar 

  46. Yiu, H.H.P., Wright, P.A., Botting, N.P.: Enzyme immobilisation using siliceous mesoporous molecular sieves. Micropor. Mesopor. Mat. 44–45, 763–768 (2001)

    Article  Google Scholar 

  47. Washmon-Kriel, L., Jimenez, V.L., Balkus, K.J., et al.: Cytochrome c immobilization into mesoporous molecular sieves. J. Mol. Catal. B Enzym. 10, 453–469 (2000)

    Article  CAS  Google Scholar 

  48. Yiu, H.H.P., Wright, P.A., Botting, N.P.: Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B Enzym. 15, 81–92 (2001)

    Article  CAS  Google Scholar 

  49. Corma, A., Fornes, V., Rey, F., et al.: Delaminated zeolites: an efficient support for enzymes. Adv. Mater. 14, 71–74 (2002)

    Article  CAS  Google Scholar 

  50. Diaz, J.F., Balkus Jr., K.J.: Enzyme immobilization in MCM-41 molecular sieve. J. Mol. Catal. B Enzym. 2, 115–126 (1996)

    Article  CAS  Google Scholar 

  51. Zhao, D.Y., Feng, J.L., Huo, Q.S., et al.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  52. Hartmann, M.: Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 17, 4577–4593 (2005)

    Article  CAS  Google Scholar 

  53. Zhou, H.X., Dill, K.A., et al.: Stabilization of proteins in confined spaces. Biochemistry 40, 11289–11293 (2001)

    Article  CAS  Google Scholar 

  54. Kumar, C.V., Chaudhari, A., et al.: Proteins immobilized at the galleries of layered-zirconium phosphate: structure and activity studies. J. Am. Chem. Soc. 122, 830–837 (2000)

    Article  CAS  Google Scholar 

  55. Eggers, D.K., Valentine, J.S.: Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci. 10, 250–261 (2001)

    Article  CAS  Google Scholar 

  56. Minton, A.P.: Confinement as a determinant of macromolecular structure and reactivity. Biophys. J. 63, 1090–1100 (1992)

    Article  CAS  Google Scholar 

  57. Wei, Y., Xu, J., Feng, Q., et al.: Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol–gel process. Mater. Lett. 44, 6–11 (2000)

    Article  CAS  Google Scholar 

  58. Deere, J., Magner, E., Wall, J.G., et al.: Mechanistic and structural features of protein adsorption onto mesoporous silicates. J. Phys. Chem. B 106, 7340–7347 (2002)

    Article  CAS  Google Scholar 

  59. Takahashi, H., Li, B., Sasaki, T., et al.: Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Micropor. Mesopor. Mat. 44, 755–762 (2001)

    Article  Google Scholar 

  60. Han, Y.J., Watson, J.T., Stucky, G.D., et al.: Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. J. Mol. Catal. B Enzym. 17, 1–8 (2002)

    Article  CAS  Google Scholar 

  61. Han, Y.J., Stucky, G.D., Butler, A., et al.: Mesoporous silicate sequestration and release of proteins. J. Am. Chem. Soc. 121, 9897–9898 (1999)

    Article  CAS  Google Scholar 

  62. Lei, C.H., Shin, Y.S., Liu, J., et al.: Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124, 11242–11243 (2002)

    Article  CAS  Google Scholar 

  63. Kisler, J.M., Stevens, G.W., Connor, A.J.O., et al.: Separation of biological molecules using mesoporous molecular sieves. Micropor. Mesopor. Mat. 44, 769–774 (2001)

    Article  Google Scholar 

  64. Takahashi, H., Li, B., Sasaki, T., et al.: Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater. 12, 3301–3305 (2000)

    Article  CAS  Google Scholar 

  65. Vinu, A., Murugesan, V., Tangermann, O., et al.: Adsorption of cytochrome c on mesoporous molecular sieves: influence of pH, pore diameter, and aluminum incorporation. Chem. Mater. 16, 3056–3065 (2004)

    Article  CAS  Google Scholar 

  66. Vinu, A., Murugesan, V., Hartmann, M.: Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: influence of pH and aluminum incorporation. J. Phys. Chem. B 108, 7323–7330 (2004)

    Article  CAS  Google Scholar 

  67. Jackler, G., Steitz, R., Czeslik, C.: Effect of temperature on the adsorption of lysozyme at the silica/water interface studied by optical and neutron reflectometry. Langmuir 18, 6565–6570 (2002)

    Article  CAS  Google Scholar 

  68. Drelinkiewicza, A., Hasikb, M., Quillardc, S., et al.: Infrared and Raman studies of palladium – nitrogen-containing polymers interactions. J. Mol. Struct. 511–512, 205–215 (1999)

    Article  Google Scholar 

  69. Lei, J., Fan, J., Yu, C.Z., et al.: Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Micropor. Mesopor. Mat. 73, 121–128 (2004)

    Article  CAS  Google Scholar 

  70. Cai, Q., Luo, Z.S., Pang, W.Q., et al.: Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater. 13, 258–263 (2001)

    Article  CAS  Google Scholar 

  71. Walcarius, A., Lamberts, L., Derouane, E.: The methyl viologen incorporated zeolite modified carbon paste electrode. Electrochim. Acta 38, 2257–2266 (1993)

    Article  CAS  Google Scholar 

  72. Xu, X., Tian, B.Z., Zhang, S., et al.: Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Anal. Chim. Acta 519, 31–38 (2004)

    Article  CAS  Google Scholar 

  73. Dai, Z.H., Xu, X.X., Ju, H.X.: Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Anal. Biochem. 332, 23–31 (2004)

    Article  CAS  Google Scholar 

  74. Qu, S., Wang, J., Kong, J.L., et al.: Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71, 1096–1102 (2007)

    Article  CAS  Google Scholar 

  75. Armstrong, F.A.: Probing metalloproteins by voltammetry. Struct. Bond. 72, 137–230 (1990)

    Article  CAS  Google Scholar 

  76. Li, Q.W., Luo, G.A., Feng, J.: Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 Film. Electroanalysis 13, 359–363 (2001)

    Article  CAS  Google Scholar 

  77. Mayo, S.L., Ellis, W.R., Crutchley, R.J., et al.: Long-range electron transfer in heme proteins. Science 233, 948–952 (1986)

    Article  CAS  Google Scholar 

  78. Crutchley, R.J., Ellis Jr., W.R., Gray, H.B.: Electron transfer in pentaammineruthenium (Histidine-48)-myoglobin. reorganizational energetics of a high-spin heme. J. Am. Chem. Soc. 107, 5002–5004 (1985)

    Article  CAS  Google Scholar 

  79. Leiber, C.M., Karas, J.L., Gray, H.B.: Reversible long-range electron transfer in ruthenium-modified sperm whale myoglobin. J. Am. Chem. Soc. 109, 3778–3779 (1987)

    Article  Google Scholar 

  80. King, B.C., Hawkridge, F.M.: A study of the electron transfer and oxygen binding reactions of myoglobin. J. Electroanal. Chem. 237, 81–92 (1987)

    Article  CAS  Google Scholar 

  81. Taniguchi, I., Watanabe, K., Tominaga, M., et al.: Direct electron transfer of horse heart ­myoglobin at an indium oxide electrode. J. Electroanal. Chem. 333, 331–338 (1992)

    Article  CAS  Google Scholar 

  82. Dai, Z.H., Ju, H.X., Chen, H.Y.: Mesoporous materials promoting direct electrochemistry and electrocatalysis of horseradish peroxidase. Electroanalysis 17, 862–868 (2005)

    Article  CAS  Google Scholar 

  83. Zhang, L., Zhang, Q., Li, J.H.: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic–organic hybrid film. Electrochem. Commun. 9, 1530–1535 (2007)

    Article  CAS  Google Scholar 

  84. Wang, K.Q., Yang, H., Zhu, L., et al.: Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified by Nafion and ordered mesoporous silica-SBA-15. J. Mol. Catal. B Enzym. 58, 194–198 (2009)

    Article  CAS  Google Scholar 

  85. Dai, Z.H., Xu, X.X., Wu, L.N., et al.: Detection of trace phenol based on mesoporous silica derived tyrosinase-peroxidase biosensor. Electroanalysis 17, 1571–1577 (2005)

    Article  CAS  Google Scholar 

  86. Chang, S.C., Rawson, K., McNeil, C.J.: Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosens. Bioelectron. 17, 1015–1023 (2002)

    Article  CAS  Google Scholar 

  87. Dai, Z.H., Bao, J.C., Yang, X.D., et al.: A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores. Biosens. Bioelectron. 23, 1070–1076 (2008)

    Article  CAS  Google Scholar 

  88. Bodor, G.S., Porter, S., Landt, Y., et al.: Development of monoclonal-antibodies for an assay of cardiac troponin-I and preliminary-results in suspected cases of myocardial-infarction. Clin. Chem. 38, 2203–2214 (1992)

    CAS  Google Scholar 

  89. Liu, J., Huo, Q.S., et al.: Self-assembled nanoporous electrodes for sensitive and labeling-free biomolecular recognition. Appl Phys Lett. 87, 133902 (2005)

    Article  CAS  Google Scholar 

  90. Feng, J.J., Xu, J.J., Chen, H.Y.: Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Biosens. Bioelectron. 22, 1618–1624 (2007)

    Article  CAS  Google Scholar 

  91. You, C.P., Xu, X., Tian, B.Z., et al.: Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta 78, 705–710 (2009)

    Article  CAS  Google Scholar 

  92. You, C.P., Yan, X.W., Kong, J.L., et al.: Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. Electrochem. Commun. 10, 1864–1867 (2008)

    Article  CAS  Google Scholar 

  93. Zhou, M., Shang, L., Li, B.L., et al.: Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens. Bioelectron. 24, 442–447 (2008)

    Article  CAS  Google Scholar 

  94. Lu, X.B., Xiao, Y., Lei, Z.B., et al.: A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. J. Mater. Chem. 19, 4707–4714 (2009)

    Article  CAS  Google Scholar 

  95. Zhang, L.: Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens. Bioelectron. 23, 1610–1615 (2008)

    Article  CAS  Google Scholar 

  96. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  97. Jia, N., Wang, Z., Yang, G., et al.: Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem. Commun. 9, 233–238 (2007)

    Article  CAS  Google Scholar 

  98. Willner, I., Willner, B., Katz, E.: Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70, 2–11 (2007)

    Article  CAS  Google Scholar 

  99. Zang, J.F., Li, C.M., Cui, X.Q., et al.: Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014 (2007)

    Article  CAS  Google Scholar 

  100. Lu, X.B., Xiao, Y., Lei, Z.B., et al.: Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens. Bioelectron. 25, 244–247 (2009)

    Article  CAS  Google Scholar 

  101. Batchelor-McAuley, C., Shao, L.D., Wildgoose, G.G., et al.: An electrochemical comparison of manganese dioxide microparticles versus α and β manganese dioxide nanorods: mechanistic­ and electrocatalytic behaviour. New J. Chem. 32, 1195–1203 (2008)

    Article  CAS  Google Scholar 

  102. Šljukić, B., Compton, R.G.: Manganese dioxide graphite composite electrodes formed via a low temperature method: detection of hydrogen peroxide, ascorbic acid and nitrite. Electroanalysis 19, 1275–1280 (2007)

    Article  CAS  Google Scholar 

  103. Yu, J.J., Zhao, T., Zeng, B.Z., et al.: Mesoporous MnO2 as enzyme immobilization host for amperometric glucose biosensor construction. Electrochem. Commun. 10, 1318–1321 (2008)

    Article  CAS  Google Scholar 

  104. Xu, X., Tian, B.Z., Kong, J.L., et al.: Ordered mesoporous niobium oxide film: a novel matrix for assembling functional proteins for bioelectrochemical applications. Adv. Mater. 15, 1932–1936 (2003)

    Article  CAS  Google Scholar 

  105. Wang, L.F., Zhao, Y., Lin, K.F., et al.: Super-hydrophobic ordered mesoporous carbon monolith. Carbon 44, 1336–1339 (2006)

    Article  CAS  Google Scholar 

  106. Sampath, S., Lev, O.: Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer. Anal. Chem. 68, 2015–2021 (1996)

    Article  CAS  Google Scholar 

  107. Tinoco, I., Kauer, K., Wang, J.C., et al.: Physical Chemistry – Principles and Applications in Biological Sciences, p. 606. Prentice-Hall, Englewood Cliffs (1978)

    Google Scholar 

  108. Dai, Z.H., Lu, G.F., Bao, J.C., et al.: Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode. Electroanalysis 19, 604–607 (2007)

    Article  CAS  Google Scholar 

  109. Ding, Y., Kim, Y.J., Erlebacher, J., et al.: Nanoporous gold leaf: “ancient technology”. Adv. Mater. 16, 1897–1900 (2004)

    Article  CAS  Google Scholar 

  110. Xu, C.X., Su, J.X., Xu, X.H., et al.: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42–43 (2007)

    Article  CAS  Google Scholar 

  111. Jena, B.K., Raj, C.R.: Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal. Chem. 78, 6332–6339 (2006)

    Article  CAS  Google Scholar 

  112. Pingarron, J.M., Yanez-Sedeno, P., Gonzalez-Cortes, A., et al.: Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53, 5848–5866 (2008)

    Article  CAS  Google Scholar 

  113. Drummond, T.G., Hill, M.G., Barton, J.K., et al.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003)

    Article  CAS  Google Scholar 

  114. Park, S.J., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002)

    Article  CAS  Google Scholar 

  115. Hu, K.C., Lan, D.X., Li, X.M.: Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 80, 9124–9130 (2008)

    Article  CAS  Google Scholar 

  116. Rho, S.C., Jahng, D., Lim, J.H., et al.: Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide. Biosens. Bioelectron. 23, 852–856 (2008)

    Article  CAS  Google Scholar 

  117. Jia, J.B., Cao, L.Y., Wang, Z.H., et al.: Platinum-coated gold nanoporous film surface: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir 24, 5932–5936 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Biosensors Based on Nanoporous Materials. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_6

Download citation

Publish with us

Policies and ethics