Advertisement

NanoBiosensing pp 535-567 | Cite as

Nanobiosensing for Clinical Diagnosis

  • Huangxian Ju
  • Xueji Zhang
  • Joseph Wang
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Technological platforms that provide the reliable, rapid, quantitative, cheap, and high-throughput identification of biomolecules play a significant role in the clinical deployment of personalized treatment [1]. A biosensor is a small device employing biochemical molecular-recognition properties as the basis for a selective analysis [2]. Three basic parts are involved in any biosensor system: biosensing, signal transduction, and signal readout. The biosensing element is capable of recognizing the presence, activity, or concentration of a specific analyte; it could be either a binding process (affinity ligand-based biosensor with the recognition element of a protein, peptide, DNA, RNA, whole cell, or tissue) or a biocatalytic reaction (enzyme-based biosensor). Over the past decades, due to their advantages of specificity, speed, portability, and low cost, we have witnessed a tremendous amount of activity in the area of biosensors as well as their clinical applications [3], especially for cancer diagnosis [4–10].

Keywords

Biological Detection Nanofluidic Device Immunochromatographic Strip Nanowire Sensor Nanofluidic Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hood, L., Heath, J.R., Phelps, M.E., et al.: Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004)Google Scholar
  2. 2.
    Thevenot, D.R., Toth, K., Durst, R.A., et al.: Electrochemical biosensors: recommended definitions and classifications. Biosens. Bioelectron. 16, 121–131 (2001)Google Scholar
  3. 3.
    D’Orazio, P.: Biosensors in clinical chemistry. Clin. Chim. Acta 334, 41–69 (2003)Google Scholar
  4. 4.
    Faraggi, D., Kramar, A.: Methodological issues associated with tumor marker development – biostatistical aspects. Urol. Oncol. 5, 211–213 (2000)Google Scholar
  5. 5.
    Soper, S.A., Brown, K., Ellington, A., et al.: Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21, 1932–1942 (2006)Google Scholar
  6. 6.
    Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)Google Scholar
  7. 7.
    Wu, J., Fu, Z.F., Yan, F., et al.: Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trac Trends Anal. Chem. 26, 679–688 (2007)Google Scholar
  8. 8.
    Ding, L., Du, D., Zhang, X.J., et al.: Trends in cell-based electrochemical biosensors. Curr. Med. Chem. 15, 3160–3170 (2008)Google Scholar
  9. 9.
    Kintzios, S.E.: Cell-based biosensors in clinical chemistry. Mini Rev. Med. Chem. 7, 1019–1026 (2007)Google Scholar
  10. 10.
    Cosnier, S., Mailley, P.: Recent advances in DNA sensors. Analyst 133, 984–991 (2008)Google Scholar
  11. 11.
    Cheng, M.M.C., Cuda, G., Bunimovich, Y.L., et al.: Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006)Google Scholar
  12. 12.
    Jain, K.K.: Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 3, 153–161 (2003)Google Scholar
  13. 13.
    Jain, K.K.: Nanobiotechnology: Technologies, Markets and Companies. Jain PharmaBiotech Publications, Basel (2005)Google Scholar
  14. 14.
    Jain, K.K.: Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta 358, 37–54 (2005)Google Scholar
  15. 15.
    Jain, K.K.: Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002–2009 (2007)Google Scholar
  16. 16.
    Vo-Dinh, T.: Nanosensing at the single cell level. Spectrochim. Acta B 63, 95–103 (2008)Google Scholar
  17. 17.
    Poole Jr., C.P., Owens, F.J.: Introduction to Nanotechnology. Wiley, New York (2003)Google Scholar
  18. 18.
    Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)Google Scholar
  19. 19.
    Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)Google Scholar
  20. 20.
    Bonnemann, H., Richards, R.M.: Nanoscopic metal particles-synthetic methods and potential applications. Eur. J. Inorg. Chem. 10, 2455–2480 (2001)Google Scholar
  21. 21.
    Niemeyer, C.M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001)Google Scholar
  22. 22.
    Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)Google Scholar
  23. 23.
    West, J.L., Halas, N.J.: Applications of nanotechnology to biotechnology – commentary. Curr. Opin. Biotechnol. 11, 215–217 (2000)Google Scholar
  24. 24.
    Parak, W.J., Gerion, D., Pellegrino, T., et al.: Biological applications of colloidal nanocrystals. Nanotechnology 14, R15–R27 (2003)Google Scholar
  25. 25.
    Agasti, S.S., Rana, S., Park, M.H., et al.: Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev. 62, 316–328 (2010)Google Scholar
  26. 26.
    Wilson, R.: The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008)Google Scholar
  27. 27.
    Kai, E., Sawata, S., Ikebukuro, K., et al.: Detection of PCR products in solution using surface plasmon resonance. Anal. Chem. 71, 796–800 (1999)Google Scholar
  28. 28.
    He, L., Musick, M.D., Nicewarner, S.R., et al.: Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 122, 9071–9077 (2000)Google Scholar
  29. 29.
    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)Google Scholar
  30. 30.
    Taton, T.A., Mirkin, C.A., Letsinger, R.L.: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)Google Scholar
  31. 31.
    Nam, J.M., Park, S.J., Mirkin, C.A.: Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc. 124, 3820–3821 (2002)Google Scholar
  32. 32.
    Nam, J.M., Stoeva, S.I., Mirkin, C.A.: Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933 (2004)Google Scholar
  33. 33.
    Thaxton, C.S., Hill, H.D., Georganopoulou, D.G., et al.: A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal. Chem. 77, 8174–8178 (2005)Google Scholar
  34. 34.
    Hill, H.D., Vega, R.A., Mirkin, C.A.: Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. Anal. Chem. 79, 9218–9223 (2007)Google Scholar
  35. 35.
    Bruchez, M., Moronne, M., Gin, P., et al.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)Google Scholar
  36. 36.
    Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)Google Scholar
  37. 37.
    Dahan, M., Levi, S., Luccardini, C., et al.: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003)Google Scholar
  38. 38.
    Derfus, A.M., Chan, W.C.W., Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)Google Scholar
  39. 39.
    Dubertret, B., Skourides, P., Norris, D.J., et al.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002)Google Scholar
  40. 40.
    Sapsford, K.E., Pons, T., Medintz, I.L., et al.: Biosensing with luminescent semiconductor quantum dots. Sensors 6, 925–953 (2006)Google Scholar
  41. 41.
    Han, M.Y., Gao, X.H., Su, J.Z., et al.: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001)Google Scholar
  42. 42.
    Perez, J.M., Josephson, L., O’Loughlin, T., et al.: Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002)Google Scholar
  43. 43.
    Perez, J.M., O’Loughin, T., Simeone, F.J., et al.: DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002)Google Scholar
  44. 44.
    Grimm, J., Perez, J.M., Josephson, L., et al.: Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64, 639–643 (2004)Google Scholar
  45. 45.
    Wang, J., Kawde, A.N., Musameh, M.: Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128, 912–916 (2003)Google Scholar
  46. 46.
    Munge, B., Liu, G.D., Collins, G., et al.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)Google Scholar
  47. 47.
    Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)Google Scholar
  48. 48.
    Yu, X., Munge, B., Patel, V., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)Google Scholar
  49. 49.
    Lai, G.S., Yan, F., Ju, H.X.: Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81, 9730–9736 (2009)Google Scholar
  50. 50.
    Woolley, A.T., Guillemette, C., Cheung, C.L., et al.: Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18, 760–763 (2000)Google Scholar
  51. 51.
    Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., et al.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. 100, 4984–4989 (2003)Google Scholar
  52. 52.
    Martin, C.R.: Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 28, 61–68 (1995)Google Scholar
  53. 53.
    Cui, Y., Wei, Q.Q., Park, H.K., et al.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)Google Scholar
  54. 54.
    Hahm, J.I., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004)Google Scholar
  55. 55.
    Patolsky, F., Zheng, G., Hayden, O., et al.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. 101, 14017–14022 (2004)Google Scholar
  56. 56.
    Wang, W.U., Chen, C., Lin, K.H., et al.: Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. 102, 3208–3212 (2005)Google Scholar
  57. 57.
    Forzani, E.S., Zhang, H.Q., Nagahara, L.A., et al.: A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785–1788 (2004)Google Scholar
  58. 58.
    Ramanathan, K., Bangar, M.A., Yun, M.H., et al.: Individually addressable conducting polymer nanowires array. Nano Lett. 4, 1237–1239 (2004)Google Scholar
  59. 59.
    Wang, J., Dai, J.H., Yarlagadda, T.: Carbon nanotube-conducting-polymer composite nanowires. Langmuir 21, 9–12 (2005)Google Scholar
  60. 60.
    Wang, J.: Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4–9 (2009)Google Scholar
  61. 61.
    Wu, J., Balasubramanian, S., Kagan, D., et al.: Motion-based DNA detection using catalytic nanomotors. Nat. Commun. (2010). doi: 10.1038/ncomms1035 Google Scholar
  62. 62.
    Wang, Y., Hernandez, R.M., Bartlett, D.J., et al.: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006)Google Scholar
  63. 63.
    Fournier-Bidoz, S., Arsenault, A.C., Manners, I., et al.: Synthetic self-propelled nanorotors. Chem. Commun. 4, 441–443 (2005)Google Scholar
  64. 64.
    Kline, T.R., Paxton, W.F., Mallouk, T.E., et al.: Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44, 744–746 (2005)Google Scholar
  65. 65.
    Kagan, D., Calvo-Marzal, P., Balasubramanian, S., et al.: Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131, 12082–12083 (2009)Google Scholar
  66. 66.
    Hess, H., Bachand, G.D.: Biomolecular motors. Mater. Today 8, 22–29 (2005)Google Scholar
  67. 67.
    Choi, Y., Baker, J.R.: Targeting cancer cells with DNA-assembled dendrimers: a mix and match strategy for cancer. Cell Cycle 4, 669–671 (2005)Google Scholar
  68. 68.
    Kukowska-Latallo, J.F., Candido, K.A., Cao, Z.Y., et al.: Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005)Google Scholar
  69. 69.
    Pan, B., Cui, D., Sheng, Y., et al.: Dendrimer modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 67, 8156–8163 (2007)Google Scholar
  70. 70.
    Wang, J., Jiang, M., Nilsen, T.W., et al.: Dendritic nucleic acid probes for DNA biosensors. J. Am. Chem. Soc. 120, 8281–8282 (1999)Google Scholar
  71. 71.
    Stears, R.L., Getts, R.C., Gullans, S.R.: A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 3, 93–99 (2000)Google Scholar
  72. 72.
    Wilson, S.R.: Nanomedicine: fullerene and carbon nanotube biology. In: Osawa, E. (ed.) Perspectives in Fullerene Nanotechnology, pp. 93–111. Kluwer Academic Publishers, New York (2002)Google Scholar
  73. 73.
    Ali, S.S., Hardt, J.I., Quick, K.L., et al.: A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37, 1191–1202 (2004)Google Scholar
  74. 74.
    Jain, K.K.: The role of nanobiotechnology in drug discovery. Drug Discov. Today 10, 1435–1442 (2005)Google Scholar
  75. 75.
    Dugan, L.L., Lovett, E.G., Quick, K.L., et al.: Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord. 7, 243–246 (2001)Google Scholar
  76. 76.
    Revets, H., De Baetselier, P., Muyldermans, S.: Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. 5, 111–124 (2005)Google Scholar
  77. 77.
    Deffar, K., Shi, H.L., Li, L., et al.: Nanobodies – the new concept in antibody engineering. Afr. J. Biotechnol. 8, 2645–2652 (2009)Google Scholar
  78. 78.
    Roovers, R.C., van Dongen, G.A.M.S., Henegouwen, P.M.P.V.E.: Nanobodies in therapeutic applications. Curr. Opin. Mol. Ther. 9, 327–335 (2007)Google Scholar
  79. 79.
    Roovers, R.C., Laeremans, T., Huang, L., et al.: Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR nanobodies. Cancer Immunol. Immun. 56, 303–317 (2007)Google Scholar
  80. 80.
    MacBeath, G., Schreiber, S.L.: Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)Google Scholar
  81. 81.
    Ginger, D.S., Zhang, H., Mirkin, C.A.: The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 30–45 (2004)Google Scholar
  82. 82.
    Schwartz, P.V.: Meniscus force nanografting: nanoscopic patterning of DNA. Langmuir 17, 5971–5977 (2001)Google Scholar
  83. 83.
    Kramer, S., Fuierer, R.R., Gorman, C.B.: Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103, 4367–4418 (2003)Google Scholar
  84. 84.
    Demers, L.M., Ginger, D.S., Park, S.J., et al.: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002)Google Scholar
  85. 85.
    Lee, K.B., Park, S.J., Mirkin, C.A., et al.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)Google Scholar
  86. 86.
    Lee, K.B., Kim, E.Y., Mirkin, C.A., et al.: The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett. 4, 1869–1872 (2004)Google Scholar
  87. 87.
    Bayley, H., Cremer, P.S.: Stochastic sensors inspired by biology. Nature 413, 226–230 (2001)Google Scholar
  88. 88.
    Howorka, S., Cheley, S., Bayley, H.: Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 19, 636–639 (2001)Google Scholar
  89. 89.
    Li, J.L., Gershow, M., Stein, D., et al.: DNA molecules and configurations in a solidstate nanopore microscope. Nat. Mater. 2, 611–615 (2003)Google Scholar
  90. 90.
    Kang, M., Yu, S., Li, N., et al.: Nanowell-array surfaces. Small 1, 69–72 (2005)Google Scholar
  91. 91.
    Bayley, H., Martin, C.R.: Resistive-pulse sensing from microbes to molecules. Chem. Rev. 100, 2575–2594 (2000)Google Scholar
  92. 92.
    Napoli, M., Eijkel, J.C.T., Pennathur, S.: Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10, 957–985 (2010)Google Scholar
  93. 93.
    Han, J., Craighead, H.G.: Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000)Google Scholar
  94. 94.
    Huber, D.E., Markel, M.L., Pennathur, S., et al.: Oligonucleotide hybridization and free-solution electrokinetic separation in a nanofluidic device. Lab Chip 9, 2933–2940 (2009)Google Scholar
  95. 95.
    Park, S.J., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002)Google Scholar
  96. 96.
    Fan, Y., Chen, X., Trigg, A.D., et al.: Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc. 129, 5437–5443 (2007)Google Scholar
  97. 97.
    Roy, S., Vedala, S., Roy, A.D., et al.: Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett. 8, 26–30 (2008)Google Scholar
  98. 98.
    Löhndorf, M., Schlecht, U., Gronewold, T.M.A., et al.: Microfabricated high-performance microwave impedance biosensors for detection of aptamer-protein interactions. Appl. Phys. Lett. 87, 243902 (2005)Google Scholar
  99. 99.
    Vo-Dinh, T., Kasili, P.: Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem. 382, 918–925 (2005)Google Scholar
  100. 100.
    Vo-Dinh, T., Alarie, J.P., Cullum, B.M.: Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol. 18, 764–767 (2000)Google Scholar
  101. 101.
    Wu, G.H., Ji, H.F., Hansen, K., et al.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. 98, 1560–1564 (2001)Google Scholar
  102. 102.
    Mukhopadhyay, R., Lorentzen, M., Kjems, J., et al.: Nanomechanical sensing of DNA sequences using piezoresistive cantilevers. Langmuir 21, 8400–8408 (2005)Google Scholar
  103. 103.
    Su, M., Li, S.U., Dravid, V.P.: Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82, 3562–3564 (2003)Google Scholar
  104. 104.
    Lee, J.H., Hwang, K.S., Park, J., et al.: Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20, 2157–2162 (2005)Google Scholar
  105. 105.
    Ilic, B., Yang, Y., Craighead, H.G.: Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85, 2604–2606 (2004)Google Scholar
  106. 106.
    Ilic, B., Czaplewski, D., Zalalutdinov, M., et al.: Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B 19, 2825–2828 (2001)Google Scholar
  107. 107.
    Cornell, B.A., Braach-Maksvytis, V.L., King, L.G., et al.: A biosensor that uses ion-channel switches. Nature 387, 580–583 (1997)Google Scholar
  108. 108.
    Oh, S.Y., Cornell, B., Smith, D., et al.: Rapid detection of influenza A virus in clinical samples using an ion channel switch biosensor. Biosens. Bioelectron. 23, 1161–1165 (2008)Google Scholar
  109. 109.
    Barone, P.W., Baik, S., Heller, D.A., et al.: Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005)Google Scholar
  110. 110.
    Xu, H., Aylott, J.W., Kopelman, R.: Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging. Analyst 127, 1471–1477 (2002)Google Scholar
  111. 111.
    Liu, G.D., Lin, Y.Y., Wang, J., et al.: Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 79, 7644–7653 (2007)Google Scholar
  112. 112.
    Zheng, G.F., Patolsky, F., Cui, Y., et al.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005)Google Scholar
  113. 113.
    Bao, Y.P., Huber, M., Wei, T.F., et al.: SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res. 33, e15 (2005)Google Scholar
  114. 114.
    Bailey, V.J., Easwaran, H., Zhang, Y., et al.: MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res. 19, 1455–1461 (2009)Google Scholar
  115. 115.
    Zhao, X.J., Tapec-Dytioco, R., Wang, K.M., et al.: Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem. 75, 3476–3483 (2003)Google Scholar
  116. 116.
    Gasparac, R., Taft, B.J., Lapierre-Devlin, M.A., et al.: Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J. Am. Chem. Soc. 126, 12270–12271 (2004)Google Scholar
  117. 117.
    Kukura, P., Ewers, H., Mueller, C., et al.: High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Meth. 6, 923–927 (2009)Google Scholar
  118. 118.
    Zhao, X.J., Hilliard, L.R., Mechery, S.J., et al.: A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. 101, 15027–15032 (2004)Google Scholar
  119. 119.
    Barth, B.M., Sharma, R., Altinoglu, E.I., et al.: Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano 4, 1279–1287 (2010)Google Scholar
  120. 120.
    Wu, X.Y., Liu, H.J., Liu, J.Q., et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingP.R. China
  2. 2.World Precision Instruments, Inc.SarasotaUSA
  3. 3.University of Science & TechnologyBeijingP.R. China
  4. 4.University of CaliforniaSan DiegoUSA

Personalised recommendations