Skip to main content

Nanomaterials for Immunosensors and Immunoassays

  • Chapter
  • First Online:
NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

There is a continuously increasing demand for the specific and sensitive ­determination of trace amounts of analytes in complex matrices for various ­purposes. In this respect, immunoassays and immunosensors that rely on ­antibody–antigen binding provide a promising approach of analysis for their remarkable specificity and sensitivity. High specificity of immunoassays and immunosensors is achieved solely by the molecular recognition of target analytes by antibodies or antigens to form stable immunocomplexes. On the other hand, sensitivity depends on several factors, including the affinity of antibodies, the amount of immobilized immunological recognition elements, and the choice of transducer and signal probe. Therefore, the improvement of immunoassay and immunosensor performance mainly relies on the development of antibody preparation techniques, the improvement of immobilization and tagging methods, and the adoption of a high-performance transduction method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferenicik, M.: Handbook of Immunochemistry. Chapman and Hall, New York (1993)

    Google Scholar 

  2. Clausen, J.: Immunochemical Techniques for the Identification and Estimation of Macromolecules. North Holland, London (1972)

    Google Scholar 

  3. Stryer, L.: Biochemistry. Freeman, San Francisco (1981)

    Google Scholar 

  4. Köhler, G., Milstein, C.: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975)

    Article  Google Scholar 

  5. Harlow, E., Lane, D.: Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988)

    Google Scholar 

  6. Fu, Z.F., Hao, C., Fei, X.Q., et al.: Flow-injection chemiluminescent immunoassay for α-fetoprotein based on epoxysilane modified glass microbeads. J. Immunol. Meth. 312, 61–67 (2006)

    Article  CAS  Google Scholar 

  7. Englebienne, P., Van Hoonacker, A., Valsamis, J.: Rapid homogeneous immunoassay for human ferritin in the cobas mira using colloidal gold as the reporter reagent. Clin. Chem. 46, 2000–2003 (2000)

    CAS  Google Scholar 

  8. Schmalzing, D., Buonocore, S., Piggee, C.: Capillary electrophoresis-based immunoassays. Electrophoresis 21, 3919–3930 (2000)

    Article  CAS  Google Scholar 

  9. Nielsen, K., Lin, M., Gall, D., et al.: Fluorescence polarization immunoassay: detection of antibody to Brucella abortus. Methods 22, 71–76 (2000)

    Article  CAS  Google Scholar 

  10. Pulli, T., Höyhtyä, M., Söderlund, H., et al.: One-step homogeneous immunoassay for small analytes. Anal. Chem. 77, 2637–2642 (2005)

    Article  CAS  Google Scholar 

  11. Fu, Z.F., Yang, Z.J., Tang, J.H., et al.: Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay. Anal. Chem. 79, 7376–7382 (2007)

    Article  CAS  Google Scholar 

  12. Watanabe, E., Kubo, H., Kanzaki, Y., et al.: Immunoassay based on a polyclonal antibody for sex steroid hormones produced by a heterogeneous hapten-conjugated immunogen: estimation of its potentiality and antibody characteristics. Anal. Chim. Acta 658, 56–62 (2010)

    Article  CAS  Google Scholar 

  13. Fu, Z.F., Yan, F., Liu, H., et al.: A channel-resolved approach coupled with magnet-captured technique for multianalyte chemiluminescent immunoassay. Biosens. Bioelectron. 23, 1422–1428 (2008)

    Article  CAS  Google Scholar 

  14. Turner, A.P.F., Karube, I., Wilson, G.S.: Biosensors: Fundamentals and Applications. Oxford University Press, New York (1987)

    Google Scholar 

  15. Wu, J., Tang, J.H., Dai, Z., et al.: A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens. Bioelectron. 22, 102–108 (2006)

    Article  CAS  Google Scholar 

  16. Chen, J., Tang, J.H., Yan, F., et al.: A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 27, 2313–2321 (2006)

    Article  CAS  Google Scholar 

  17. Wu, J., Yan, F., Zhang, X.Q., et al.: Disposable reagentless electrochemical immunosensor array based on a biopolymer/sol-gel membrane for simultaneous measurement of several tumor markers. Clin. Chem. 54, 1481–1488 (2008)

    Article  CAS  Google Scholar 

  18. Wu, J., Yan, Y.T., Yan, F., et al.: Electric field-driven strategy for multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array. Anal. Chem. 80, 6072–6077 (2008)

    Article  CAS  Google Scholar 

  19. He, X.L., Yuan, R., Chai, Y.Q., et al.: A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J. Biochem. Biophys. Meth. 70, 823–829 (2008)

    Article  CAS  Google Scholar 

  20. Liang, K.Z., Qi, J.S., Mu, W.J., et al.: Biomolecules/gold nanowires-doped sol-gel film for label-free electrochemical immunoassay of testosterone. J. Biochem. Biophys. Meth. 70, 1156–1162 (2008)

    Article  CAS  Google Scholar 

  21. Loyprasert, S., Thavarungkul, P., Asawatreratanakul, P., et al.: Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens. Bioelectron. 24, 78–86 (2008)

    Article  CAS  Google Scholar 

  22. Wohlstadter, J.N., Wilbur, J.L., Sigal, G.B., et al.: Carbon nanotube-based biosensor. Adv. Mater. 15, 1184–1187 (2003)

    Article  CAS  Google Scholar 

  23. Wu, L.N., Yan, F., Ju, H.X.: An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J. Immunol. Meth. 322, 12–19 (2007)

    Article  CAS  Google Scholar 

  24. Zhang, J., Lei, J.P., Xu, C.L., et al.: Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82, 1117–1122 (2010)

    Article  CAS  Google Scholar 

  25. Liu, Y., Jiang, H.: Electroanalytical determination of carcinoembryonic antigen at a silica nanoparticles/titania sol-gel composite membrane-modified gold electrode. Electroanalysis 18, 1007–1013 (2006)

    Article  Google Scholar 

  26. Wang, H., Li, J.S., Ding, Y.J., et al.: Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method. Anal. Chim. Acta 501, 37–43 (2004)

    Article  CAS  Google Scholar 

  27. Yang, Z.J., Xie, Z.Y., Liu, H., et al.: Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater. 18, 3991–3998 (2008)

    Article  CAS  Google Scholar 

  28. Li, J.S., He, X.X., Wu, Z.Y., et al.: Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures. Anal. Chim. Acta 481, 191–198 (2003)

    Article  CAS  Google Scholar 

  29. Tang, D.P., Yuan, R., Chai, Y.Q.: Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin. Chem. 53, 1323–1329 (2007)

    Article  CAS  Google Scholar 

  30. Park, J.S., Cho, M.K., Lee, E.J., et al.: A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat. Nanotechnol. 4, 259–264 (2009)

    Article  CAS  Google Scholar 

  31. Hayatt, M.A.: Colloidal Gold: Principles, Methods and Applications. Academic, San Diego (1989)

    Google Scholar 

  32. Shim, W.B., Kim, K.Y., Chung, D.H.: Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. J. Agr. Food Chem. 57, 4035–4041 (2009)

    Article  CAS  Google Scholar 

  33. Girotti, S., Eremin, S., Montoya, A., et al.: Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection. Anal. Bioanal. Chem. 396, 687–695 (2010)

    Article  CAS  Google Scholar 

  34. Gas, F., Bausa, B., Pinto, L., et al.: One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens. Bioelectron. 25, 1235–1239 (2010)

    Article  CAS  Google Scholar 

  35. Xu, Y., Huang, Z.B., He, Q.H., et al.: Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 119, 834–839 (2010)

    Article  CAS  Google Scholar 

  36. Liu, B.H., Tsao, Z.J., Wang, J.J., et al.: Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal. Chem. 80, 7029–7035 (2008)

    Article  CAS  Google Scholar 

  37. Zhang, M.Z., Wang, M.Z., Chen, Z.L., et al.: Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal. Bioanal. Chem. 395, 2591–2599 (2009)

    Article  CAS  Google Scholar 

  38. Zhang, S.B., Wu, Z.S., Guo, M.M., et al.: A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label. Talanta 71, 1530–1535 (2007)

    Article  CAS  Google Scholar 

  39. Du, B.A., Li, Z.P., Cheng, Y.Q.: Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection. Talanta 75, 959–964 (2008)

    Article  CAS  Google Scholar 

  40. Hu, D.H., Han, H.Y., Zhou, R., et al.: Gold(III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae. Analyst 133, 768–773 (2008)

    Article  CAS  Google Scholar 

  41. Li, Z.P., Wang, Y.C., Liu, C.H., et al.: Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay. Anal. Chim. Acta 551, 85–91 (2005)

    Article  CAS  Google Scholar 

  42. Li, Z.P., Liu, C.H., Fan, Y.S., et al.: A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels. Anal. Biochem. 359, 247–252 (2006)

    Article  CAS  Google Scholar 

  43. Wang, Z.P., Hu, J.Q., Jin, Y., et al.: in Situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin. Chem. 52, 1958–1961 (2006)

    Article  CAS  Google Scholar 

  44. Duan, C.F., Yu, Y.Q., Cui, H.: Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst 133, 1250–1255 (2008)

    Article  CAS  Google Scholar 

  45. Leng, C., Lai, G.S., Yan, F., et al.: Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip. Anal. Chim. Acta 666, 97–101 (2010)

    Article  CAS  Google Scholar 

  46. Selvaraju, T., Das, J., Han, S.W., et al.: Ultrasensitive electrochemical immunosensing using magnetic beads and gold nanocatalysts. Biosens. Bioelectron. 23, 932–938 (2008)

    Article  CAS  Google Scholar 

  47. Mao, X., Jiang, J.H., Luo, Y., et al.: Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta 73, 420–424 (2007)

    Article  CAS  Google Scholar 

  48. Chumbimuni-Torres, K.Y., Dai, Z., Rubinova, N., et al.: Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. J. Am. Chem. Soc. 128, 13676–13677 (2006)

    Article  CAS  Google Scholar 

  49. Zhang, J.J., Wang, J.L., Zhu, J.J., et al.: An electrochemical impedimetric arrayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles. Microchim. Acta 163, 63–70 (2008)

    Article  CAS  Google Scholar 

  50. Jin, X.Y., Jin, X.F., Chen, L.G., et al.: Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosens. Bioelectron. 24, 2580–2585 (2009)

    Article  CAS  Google Scholar 

  51. Liu, X., Dai, Q., Austin, L., et al.: A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130, 2780–2782 (2008)

    Article  CAS  Google Scholar 

  52. Jiang, Z.L., Liao, X.J., Deng, A.P., et al.: Catalytic effect of nanogold on Cu(II)-N2H4 reaction and its application to resonance scattering immunoassay. Anal. Chem. 80, 8681–8687 (2008)

    Article  CAS  Google Scholar 

  53. Wei, X.L., Liang, A.H., Zhang, S.S., et al.: A selective resonance scattering assay for immunoglobulin G using Cu(II)-ascorbic acid-immunonanogold reaction. Anal. Biochem. 380, 223–228 (2008)

    Article  CAS  Google Scholar 

  54. Manimaran, M., Jana, N.R.: Detection of protein molecules by surface-enhanced Raman ­spectroscopy-based immunoassay using 2–5 nm gold nanoparticle labels. J. Raman Spectrosc. 38, 1326–1331 (2007)

    Article  CAS  Google Scholar 

  55. Grubisha, D.S., Lipert, R.J., Park, H.Y., et al.: Femtomolar detection of prostate-specific ­antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936–5943 (2003)

    Article  CAS  Google Scholar 

  56. Mitchell, J.S., Lowe, T.E.: Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor. Biosens. Bioelectron. 24, 2177–2183 (2009)

    Article  CAS  Google Scholar 

  57. Yuan, J., Oliver, R., Lia, J., et al.: Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Biosens. Bioelectron. 23, 144–148 (2007)

    Article  CAS  Google Scholar 

  58. Hu, S.H., Liu, R., Zhang, S.C., et al.: A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 1096–1103 (2009)

    Article  CAS  Google Scholar 

  59. Hu, S.H., Zhang, S.C., Hu, Z.C., et al.: Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immunomicroarray with element-tagged antibodies. Anal. Chem. 79, 923–929 (2007)

    Article  CAS  Google Scholar 

  60. Xie, C., Xu, F.G., Huang, X.Y., et al.: Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays. J. Am. Chem. Soc. 131, 12763–12770 (2009)

    Article  CAS  Google Scholar 

  61. Vinayaka, A.C., Basheer, S., Thakur, M.S.: Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens. Bioelectron. 24, 1615–1620 (2009)

    Article  CAS  Google Scholar 

  62. Warner, M.G., Grate, J.W., Tyler, A., et al.: Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens. Bioelectron. 25, 179–184 (2009)

    Article  CAS  Google Scholar 

  63. Chen, W., Peng, C.F., Jin, Z.Y., et al.: Ultrasensitive immunoassay of 7-aminoclonazepam in human urine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip. Biosens. Bioelectron. 24, 2051–2056 (2009)

    Article  CAS  Google Scholar 

  64. Soman, C.P., Giorgio, T.D.: Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Langmuir 24, 4399–4404 (2008)

    Article  CAS  Google Scholar 

  65. Goldman, E.R., Clapp, A.R., Anderson, G.P., et al.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688 (2008)

    Article  Google Scholar 

  66. Wang, J., Liu, G.D., Polsky, R., et al.: Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun. 4, 722–726 (2002)

    Article  CAS  Google Scholar 

  67. Liu, G.D., Wang, J., Kim, J., et al.: Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem. 76, 7126–7130 (2004)

    Article  CAS  Google Scholar 

  68. Wu, H., Liu, G.D., Wang, J., et al.: Quantum-dots based electrochemical immunoassay of interleukin-1α. Electrochem. Commun. 9, 1573–1577 (2007)

    Article  CAS  Google Scholar 

  69. Wang, J., Liu, G.D., Wu, H., et al.: Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small 4, 82–86 (2008)

    Article  CAS  Google Scholar 

  70. Liu, G.D., Lin, Y.Y., Wang, J.: Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 79, 7644–7653 (2007)

    Article  CAS  Google Scholar 

  71. Yu, H.W., Lee, J.W., Kim, S.Y., et al.: Electrochemical immunoassay using quantum dot/­antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR. Anal. Bioanal. Chem. 394, 2173–2181 (2009)

    Article  CAS  Google Scholar 

  72. Cheng, W., Yan, F., Ding, L., et al.: Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal. Chem. 82, 3337–3342 (2010)

    Article  CAS  Google Scholar 

  73. Thurer, R., Vigassy, T., Hirayama, M., et al.: Potentiometric immunoassay with quantum dot labels. Anal. Chem. 79, 5107–5110 (2007)

    Article  Google Scholar 

  74. Feng, J., Shan, G.M., Maquieira, A., et al.: Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75, 5282–5286 (2003)

    Article  CAS  Google Scholar 

  75. Hun, X., Zhang, Z.J.: Fluoroimmunoassay for tumor necrosis factor-α in human serum using Ru(bpy)3Cl2-doped fluorescent silica nanoparticles as labels. Talanta 73, 366–371 (2007)

    Article  Google Scholar 

  76. Hun, X., Zhang, Z.J.: A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem. 105, 1623–1629 (2007)

    Article  Google Scholar 

  77. Hun, X., Zhang, Z.J.: Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels in fluoroimmunoassay for IL-6. Biosens. Bioelectron. 22, 2743–2748 (2007)

    Article  Google Scholar 

  78. Xu, Y., Li, Q.G.: Multiple fluorescent labeling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clin. Chem. 53, 1503–1510 (2007)

    Article  CAS  Google Scholar 

  79. Xia, X.H., Xu, Y., Zhao, X.L., et al.: Lateral flow immunoassay using europium chelate-loaded silica nanoparticles as labels. Clin. Chem. 55, 179–182 (2009)

    Article  CAS  Google Scholar 

  80. Wang, J., Liu, G.D., Engelhard, M.H., et al.: Sensitive immunoassay of a biomarker tumor necrosis factor-α based on poly(guanine)-functionalized silica nanoparticle label. Anal. Chem. 78, 6974–6979 (2006)

    Article  CAS  Google Scholar 

  81. Zhou, W.H., Zhu, C.L., Lu, C.H., et al.: Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes. Chem. Commun. 44, 6845–6847 (2009)

    Article  Google Scholar 

  82. Wang, J., Cao, Y., Xu, Y.Y., et al.: Colorimetric multiplexed immunoassay for sequential ­detection of tumor markers. Biosens. Bioelectron. 25, 532–536 (2009)

    Article  CAS  Google Scholar 

  83. Ambrosi, A., Airò, F., Merkoçi, A.: Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 82, 1151–1156 (2010)

    Article  CAS  Google Scholar 

  84. Tang, D.P., Yuan, R., Chai, Y.Q.: Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish ­peroxidase as enhancer. Anal. Chem. 80, 1582–1588 (2008)

    Article  CAS  Google Scholar 

  85. Kokko, L., Kokko, T., Lövgren, T., et al.: Particulate and soluble Eu(III)-chelates as donor labels in homogeneous fluorescence resonance energy transfer based immunoassay. Anal. Chim. Acta 606, 72–79 (2008)

    Article  CAS  Google Scholar 

  86. Pelkkikangas, A.M., Jaakohuhta, S., Lövgren, T., et al.: Simple, rapid, and sensitive thyroid-stimulating hormone immunoassay using europium(III) nanoparticle label. Anal. Chim. Acta 517, 169–176 (2004)

    Article  CAS  Google Scholar 

  87. Soukka, T., Antonen, K., Härmä, H., et al.: Highly sensitive immunoassay of free prostate-specific antigen in serum using europium(III) nanoparticle label technology. Clin. Chim. Acta 328, 45–58 (2003)

    Article  CAS  Google Scholar 

  88. Huhtinen, P., Soukka, T., Lövgren, T., et al.: Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin-biotin technology. J. Immunol. Meth. 294, 111–122 (2004)

    Article  CAS  Google Scholar 

  89. Cummins, C.M., Koivunen, M.E., Stephanian, A., et al.: Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens. Bioelectron. 21, 1077–1085 (2006)

    Article  CAS  Google Scholar 

  90. Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: ­carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Article  CAS  Google Scholar 

  91. Yu, X., Munge, B., Patel, V., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)

    Article  CAS  Google Scholar 

  92. Lai, G.S., Yan, F., Ju, H.X.: Dual signal amplification of glucose oxidase-functionalized ­nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81, 9730–9736 (2009)

    Article  CAS  Google Scholar 

  93. Liu, G.D., Wang, J., Wu, H., et al.: Versatile apoferritin nanoparticle labels for assay of protein. Anal. Chem. 78, 7417–7423 (2006)

    Article  CAS  Google Scholar 

  94. Liu, G.D., Wu, H., Wang, J., et al.: Apoferritin-templated synthesis of metal phosphate ­nanoparticle labels for electrochemical immunoassay. Small 2, 1139–1143 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Nanomaterials for Immunosensors and Immunoassays. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9622-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9621-3

  • Online ISBN: 978-1-4419-9622-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics