Skip to main content

Carbohydrate Detection Using Nanostructured Biosensing

  • Chapter
  • First Online:
Book cover NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Carbohydrates, which are defined as polyhydroxyaldehydes or polyhydroxyketones, or larger compounds that can be hydrolyzed into such units, are ubiquitous in the living world. Carbohydrates act as the sources of energy and carbon in plants and animals and are the important structural elements in plant cell walls as well as in the extracellular matrix of animal and human tissues. Like nucleic acids and proteins, carbohydrates are involved in many biological processes and metabolism and seem to play critical roles in determining biological functions [1]. Glycosylation also affects the biological activity, lifetime, cellular uptake, and specificity of these proteins [2]. Therefore, the study and characterization of carbohydrates has become increasingly important and has emerged as the “new frontier” for elucidating fundamental biochemical processes and for identifying new pharmaceutical substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jelinek, R., Kolusheva, S.: Carbohydrate biosensors. Chem. Rev. 104, 5987–6016 (2004)

    Article  CAS  Google Scholar 

  2. Mikkers, F.E.P., Everaerts, F.M., Verheggen, T.P.E.M.: High-performance zone electrophoresis. J. Chromatogr. A 169, 11–20 (1979)

    Article  CAS  Google Scholar 

  3. Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2007)

    Article  Google Scholar 

  4. Newman, J.D., Turner, A.P.F.: Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 20, 2435–2453 (2005)

    Article  CAS  Google Scholar 

  5. Varki, A., Manzi, A.E., Freeze, H.H.: Introduction: preparation and analysis of glycoconjugates. In: Ausubel, F.M. (ed.) Current Protocols in Molecular Biology, Unit 17.0. Wiley, New York (1996)

    Google Scholar 

  6. Lis, H., Sharon, N.: Protein glycosylation – structural and functional aspects. Eur. J. Biochem. 218, 1–27 (1993)

    Article  CAS  Google Scholar 

  7. Laine, R.A.: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4, 759–767 (1994)

    Article  CAS  Google Scholar 

  8. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  CAS  Google Scholar 

  9. Furukawa, K., Kobata, A.: Protein glycosylation. Curr. Opin. Biotechnol. 3, 554–559 (1992)

    Article  CAS  Google Scholar 

  10. Hascall, V.C., Calabro, A., Midura, R.J., et al.: Isolation and characterization of proteoglycans. Meth. Enzymol. 230, 390–417 (1994)

    Article  CAS  Google Scholar 

  11. Hart, G.W.: Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 66, 315–335 (1997)

    Article  CAS  Google Scholar 

  12. Varki, A., Marth, J.: Oligosaccharides in vertebrate development. Semin. Dev. Biol. 6, 127–138 (1995)

    Article  CAS  Google Scholar 

  13. Muramatsu, T.: Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology 3, 291–296 (1993)

    Article  CAS  Google Scholar 

  14. Fukuda, M.: Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237–2244 (1996)

    CAS  Google Scholar 

  15. Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997)

    Article  CAS  Google Scholar 

  16. Galili, U., Shohet, S.B., Kobrin, E., et al.: Man, apes and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263, 17755–17762 (1988)

    CAS  Google Scholar 

  17. Manzella, S.M., Dharmesh, S.M., Beranek, M.C., et al.: Evolutionary conservation of the sulfated oligosaccharides on vertebrate glycoprotein hormones that control circulatory half-life. J. Biol. Chem. 270, 21665–21671 (1995)

    Article  CAS  Google Scholar 

  18. Hart, G.W.: Glycosylation. Curr. Opin. Cell Biol. 4, 1017–1023 (1992)

    Article  CAS  Google Scholar 

  19. Paulson, J.C.: Glycoproteins: what are the sugar chains for? Trends Biochem. Sci. 14, 272–276 (1989)

    Article  CAS  Google Scholar 

  20. Drickamer, K., Taylor, M.E.: Evolving views of protein glycosylation. Trends Biochem. Sci. 23, 321–324 (1998)

    Article  CAS  Google Scholar 

  21. Gahmberg, C.G., Tolvanen, M.: Why mammalian cell surface proteins are glycoproteins. Trends Biochem. Sci. 21, 308–311 (1996)

    CAS  Google Scholar 

  22. Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional triads in cell–cell interactions. Curr. Opin. Struct. Biol. 6, 679–691 (1996)

    Article  CAS  Google Scholar 

  23. Nelson, R.M., Venot, A., Bevilacqua, M.P., et al.: Carbohydrate–protein interactions in vascular biology. Ann. Rev. Cell. Dev. Biol. 11, 601–631 (1995)

    Article  CAS  Google Scholar 

  24. Cummings, R.D.: Use of lectins in analysis of glycoconjugates. Meth. Enzymol. 230, 66–86 (1994)

    Article  CAS  Google Scholar 

  25. Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999)

    Article  CAS  Google Scholar 

  26. Fischer, E.: Influence of the configuration on the activity of the enzyme. Ber. Chem. Ges. 27, 2985–2993 (1894)

    Article  CAS  Google Scholar 

  27. Phillips, D.C.: The three-dimensional structure of an enzyme molecule. Sci. Am. 215, 78–90 (1996)

    Article  Google Scholar 

  28. Blake, C.C., Johnson, L.N., Mair, G.A., et al.: Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. Lond. B Biol. Sci. 167, 378–388 (1967)

    Article  CAS  Google Scholar 

  29. Rini, J.M.: Lectin structure. Ann. Rev. Biophys. Biomol. Struct. 24, 551–577 (1995)

    Article  CAS  Google Scholar 

  30. Quiocho, F.A.: Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. Annu. Rev. Biochem. 55, 287–315 (1986)

    Article  CAS  Google Scholar 

  31. Wilson, K.A., Skehel, J.J., Wiley, D.C.: Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3-Á resolution. Nature 289, 366–373 (1981)

    Article  CAS  Google Scholar 

  32. Hardman, K.D., Ainsworth, C.F.: Structure of concanavalin A at 2.4-Ǻ resolution. Biochemistry 11, 4910–4919 (1972)

    Article  CAS  Google Scholar 

  33. Edelman, G.M., Gunningham, B.A., Reeke Jr., G.N., et al.: The covalent and three-­dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. 69, 2580–2584 (1972)

    Article  CAS  Google Scholar 

  34. Kabat, E.A., Liao, J., Lemieux, R.U.: Immunochemical studies on blood groups-LXVIII. The combining site of anti-I Ma (group 1). Immunochemistry 15, 727–731 (1978)

    Article  CAS  Google Scholar 

  35. Baldwin, R.P.: Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. J. Pharm. Biomed. Anal. 19, 69–81 (1999)

    Article  CAS  Google Scholar 

  36. Whitham, K.M., Hadley, J.L., Morris, H.G., et al.: Analytical applications of carbon nanotubes: a review. Glycobiology 9, 285–291 (1999)

    Article  CAS  Google Scholar 

  37. He, L., Sato, K., Abo, M., et al.: Separation of saccharides derivatized with 2-aminobenzoic acid by capillary electrophoresis and their structural consideration by nuclear magnetic resonance. Anal. Biochem. 314, 128–134 (2003)

    Article  CAS  Google Scholar 

  38. Gao, S., Wang, W., Wang, B.: Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorg. Chem. 29, 308–320 (2001)

    Article  CAS  Google Scholar 

  39. Akimitsu, K., Hidenobu, Y., Toshifumi, T.: Sialic acid imprinted polymer-coated quartz crystal microbalance. Electroanalysis 12, 1322–1326 (2000)

    Article  Google Scholar 

  40. van Kerkhof, J.C., Bergveld, P., Schasfoort, R.B.M.: The ISFET based heparin sensor with a monolayer of protamine as affinity ligand. Biosens. Bioelectron. 10, 269–282 (1995)

    Article  Google Scholar 

  41. Bush, C.A., Martin-Pastor, M., Imbery, A.: Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Annu. Rev. Biophys. Biomol. Struct. 28, 269–293 (1999)

    Article  CAS  Google Scholar 

  42. McReynolds, K.D., Gervay-Hague, J.: Examining the secondary structures of unnatural peptides and carbohydrate-based compounds utilizing circular dichroism. Tetrahedron Asymmetr. 11, 337–362 (2000)

    Article  CAS  Google Scholar 

  43. D’Auria, S., DiCesare, N., Staiano, M., et al.: A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the thermophilic microorganism Bacillus stearothermophilus. Anal. Biochem. 303, 138–144 (2002)

    Article  Google Scholar 

  44. Lerouxel, O., Choo, T.S., Seveno, M., et al.: Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol. 130, 1754–1763 (2002)

    Article  CAS  Google Scholar 

  45. Thanawiroon, C., Rice, K.G., Toida, T., et al.: Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004)

    Article  CAS  Google Scholar 

  46. Paulus, A., Klockow, A.: Detection of carbohydrates in capillary electrophoresis. J. Chromatogr. A 720, 353–376 (1996)

    Article  CAS  Google Scholar 

  47. Starr, C.M., Irene Masada, R., Hague, C., et al.: Fluorophore-assisted carbohydrate electro­phoresis in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr. A 720, 295–321 (1996)

    Article  CAS  Google Scholar 

  48. Shigeo, S., Susumu, H.: A tabulated review of capillary electrophoresis of carbohydrates. Electrophoresis 19, 2539–2560 (1998)

    Article  Google Scholar 

  49. Penn, S.G., He, L., Natan, M.J.: Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7, 609–615 (2003)

    Article  CAS  Google Scholar 

  50. Wang, J.: Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043 (2005)

    Article  CAS  Google Scholar 

  51. Christof, M.N.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001)

    Article  Google Scholar 

  52. Eugenii, K., Itamar, W.: Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004)

    Article  Google Scholar 

  53. Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)

    Article  CAS  Google Scholar 

  54. Punit, K., Marc, W., Charles, R.M.: Nanotube membrane based biosensors. Electroanalysis 16, 9–18 (2004)

    Article  Google Scholar 

  55. Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)

    Article  CAS  Google Scholar 

  56. Wang, J.: Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2005)

    Article  CAS  Google Scholar 

  57. Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50, 3049–3060 (2005)

    Article  CAS  Google Scholar 

  58. Trojanowicz, M.: Analytical applications of carbon nanotubes: a review. Trac Trends Anal. Chem. 25, 480–489 (2006)

    Article  CAS  Google Scholar 

  59. Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19, 1439–1451 (2007)

    Article  CAS  Google Scholar 

  60. Javey, A., Wang, Q., Ural, A., et al.: Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002)

    Article  CAS  Google Scholar 

  61. Javey, A., Tu, R., Farmer, D.B., et al.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005)

    Article  CAS  Google Scholar 

  62. Wang, J.: Portable electrochemical systems. Trac Trends Anal. Chem. 21, 226–232 (2002)

    Article  CAS  Google Scholar 

  63. Wang, J.: Electrochemical detection for microscale analytical systems: a review. Talanta 56, 223–231 (2002)

    Article  CAS  Google Scholar 

  64. Kerman, K., Saito, M., Tamiya, E., et al.: Nanomaterial-based electrochemical biosensors for medical applications. Trac Trends Anal. Chem. 27, 585–592 (2008)

    Article  CAS  Google Scholar 

  65. Jorgenson, J.W., Lukacs, K.D.: Zone electrophoresis in open tubular glass capillaries. Anal. Chem. 53, 1298–1302 (1981)

    Article  CAS  Google Scholar 

  66. Sims, M.J., Li, Q., Kachoosangi, R.T., et al.: Using multiwalled carbon nanotube modified electrodes for the adsorptive striping voltammetric determination of hesperidin. Electrochim. Acta 54, 5030–5034 (2009)

    Article  CAS  Google Scholar 

  67. Prabhu, S.V., Baldwin, R.P.: Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode. Anal. Chem. 61, 852–856 (1989)

    Article  CAS  Google Scholar 

  68. Luo, P., Prabhu, S.V., Baldwin, R.P.: Constant potential amperometric detection at a copper-eased electrode: electrode formation and operation. Anal. Chem. 62, 752–755 (1990)

    Article  CAS  Google Scholar 

  69. Reim, R.E., Van Effen, R.M.: Determination of carbohydrates by liquid chromatography with oxidation at a nickel(III) oxide electrode. Anal. Chem. 58, 3203–3207 (1986)

    Article  CAS  Google Scholar 

  70. Cataldi, T.R.I., Casella, I.G., Desimoni, E., et al.: Cobalt-based glassy carbon chemically modified electrode for constant-potential amperometric detection of carbohydrates in flow-injection analysis and liquid chromatography. Anal. Chim. Acta 270, 161–171 (1992)

    Article  CAS  Google Scholar 

  71. Wang, J., Taha, Z.: Catalytic oxidation and flow detection of carbohydrates at ruthenium dioxide modified electrodes. Anal. Chem. 62, 1413–1416 (1990)

    Article  CAS  Google Scholar 

  72. Elahi, M.Y., Mousavi, M.F., Ghasemi, S.: Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose. Electrochim. Acta 54, 490–498 (2008)

    Article  CAS  Google Scholar 

  73. You, T., Niwa, O., Chen, Z., et al.: An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal. Chem. 75, 5191–5196 (2003)

    Article  CAS  Google Scholar 

  74. Sharon, N.: Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998)

    Article  Google Scholar 

  75. Dai, Z., Kawde, A.N., Xiang, Y., et al.: Nanoparticle-based sensing of glycan lectin interactions. J. Am. Chem. Soc. 128, 10018–10019 (2006)

    Article  CAS  Google Scholar 

  76. Ding, L., Ji, Q.J., Qian, R.C., et al.: Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal. Chem. 82, 1292–1298 (2010)

    Article  CAS  Google Scholar 

  77. Earhart, C., Jana, N.R., Erathodiyil, N., et al.: Synthesis of carbohydrate-conjugated nanoparticles and quantum dots. Langmuir 24, 6215–6219 (2008)

    Article  CAS  Google Scholar 

  78. Babu, P., Sinha, S., Surolia, A.: Sugar quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjug. Chem. 18, 146–151 (2006)

    Article  Google Scholar 

  79. Nagaraj, V.J., Eaton, S., Thirstrup, D., et al.: Piezoelectric printing and probing of lectin NanoProbeArrays for glycosylation analysis. Biochem. Biophys. Res. Commun. 375, 526–530 (2008)

    Article  CAS  Google Scholar 

  80. Zheng, T., Peelen, D., Smith, L.M.: Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127, 9982–9983 (2005)

    Article  CAS  Google Scholar 

  81. Noriko, N., Shin-Ichiro, N.: Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Chem. Eur. J. 12, 6478–6485 (2006)

    Article  Google Scholar 

  82. Sato, Y., Murakami, T., Yoshioka, K., et al.: 12-Mercaptododecyl β-maltoside-modified gold nanoparticles: specific ligands for concanavalin A having long flexible hydrocarbon chains. Anal. Bioanal. Chem. 391, 2527–2532 (2008)

    Article  CAS  Google Scholar 

  83. Honda, S., Iwase, S., Makino, A., et al.: Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines. Anal. Biochem. 176, 72–77 (1989)

    Article  CAS  Google Scholar 

  84. Gao, J., Liu, D., Wang, Z.: Microarray-based study of carbohydrate protein-binding by gold nanoparticle probes. Anal. Chem. 80, 8822–8827 (2008)

    Article  CAS  Google Scholar 

  85. Lin, C.C., Yeh, Y.C., Yang, C.Y., et al.: Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem. Commun. 23, 2920–2921 (2003)

    Article  Google Scholar 

  86. Guo, C., Boullanger, P., Jiang, L., et al.: Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens. Bioelectron. 22, 1830–1834 (2007)

    Article  CAS  Google Scholar 

  87. Lin, C.C., Yeh, Y.C., Yang, C.Y., et al.: Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 124, 3508–3509 (2002)

    Article  CAS  Google Scholar 

  88. Niikura, K., Nagakawa, K., Ohtake, N., et al.: Gold nanoparticle arrangement on viral particles through carbohydrate recognition: a non-cross-linking approach to optical virus detection. Bioconjug. Chem. 20, 1848–1852 (2009)

    Article  CAS  Google Scholar 

  89. Gu, L.R., Luo, P.J.G., Wang, H.F., et al.: Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromolecules 9, 2408–2418 (2008)

    Article  CAS  Google Scholar 

  90. Chikae, M., Fukuda, T., Kerman, K., et al.: Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74, 118–123 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Carbohydrate Detection Using Nanostructured Biosensing. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9622-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9621-3

  • Online ISBN: 978-1-4419-9622-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics