Skip to main content

Biofunctionalization of Nanomaterials

  • Chapter
  • First Online:
NanoBiosensing

Abstract

The unique properties of nanoscale materials (1–200 nm) offer excellent platforms for electronic or optical signal transduction and the design of a new generation of bioelectronic and biosensing devices. However, the drawbacks of nanoparticles (NPs) in biocompatibility and biological recognition ability limit their application in analytical chemistry. The biofunctionalization of nanomaterials can endow them with good biocompatibility for the immobilization of biomolecules, tissue, or cells and high specificity for biological recognition [1–6], which led to stable biosensing systems with good selectivity and reproducibility. Particularly, the biofunctional NPs can produce a synergic effect among catalytic activity, conductivity, and biocompatibility to accelerate signal transduction and achieve a rapid response to target with a very high sensitivity by signal amplification. The need for ultrasensitive bioassays and the trend toward miniaturized assays have made the biofunctionalization of nanomaterials one of the hottest fields. Therefore, seeking suitable methods for the functionalization of nanomaterials with biomolecules such as protein, DNA, small organic molecules, polymer films, and even entire living cells has attracted considerable attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goesmann, H., Feldmann, C.: Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 1362–1395 (2010)

    CAS  Google Scholar 

  2. Veiseh, O., Gunn, J.W., Zhang, M.Q.: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)

    Article  CAS  Google Scholar 

  3. Katz, E., Willner, I.: Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004)

    Article  CAS  Google Scholar 

  4. Ding, C.F., Ge, Y., Lin, J.M.: Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens. Bioelectron. 25, 1290–1294 (2010)

    Article  CAS  Google Scholar 

  5. Gill, R., Zayats, M., Willner, I.: Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)

    Article  CAS  Google Scholar 

  6. Liu, Z., Kiessling, F., Gätjens, J.: Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J. Nanomater. 2010, 894303 (2010)

    Google Scholar 

  7. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, dupramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  8. Neouze, M.A., Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. 139, 183–195 (2008)

    Article  CAS  Google Scholar 

  9. Yang, W.R., Ratinac, K.R., Ringer, S.P., et al.: Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)

    Article  CAS  Google Scholar 

  10. Murray, R.W.: Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008)

    Article  CAS  Google Scholar 

  11. Wang, J.L., Munir, A., Li, Z.H., et al.: Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens. Bioelectron. 25, 124–129 (2009)

    Article  CAS  Google Scholar 

  12. Heller, D.A., Jin, H., Martinez, B.M., et al.: Multimodal optical sensing and analyte specificity­ using single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009)

    Article  CAS  Google Scholar 

  13. Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Article  CAS  Google Scholar 

  14. Hansen, J.A., Wang, J., Kawde, A.N., et al.: Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128, 2228–2229 (2006)

    Article  CAS  Google Scholar 

  15. Munge, B., Liu, G.D., Collins, G.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)

    Article  CAS  Google Scholar 

  16. Lai, G.S., Yan, F., Ju, H.X.: Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81, 9730–9736 (2009)

    Article  CAS  Google Scholar 

  17. Jiang, H., Ju, H.X.: Enzyme–quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem. Commun. 4, 404–406 (2007)

    Article  CAS  Google Scholar 

  18. Mahtab, R., Harden, H.H., Murphy, C.J.: Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J. Am. Chem. Soc. 122, 14–17 (2000)

    Article  CAS  Google Scholar 

  19. Zheng, M., Jagota, A., Semke, E.D., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  CAS  Google Scholar 

  20. Chen, R.J., Zhang, Y.G., Wang, D.W., et al.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Article  CAS  Google Scholar 

  21. Hasobe, T., Fukuzumi, S., Kamat, P.V.: Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005)

    Article  CAS  Google Scholar 

  22. Gao, Y., Cranston, R.: Polytyrosine as an electroactive label for signal amplification in electrochemical immunosensors. Anal. Chim. Acta 659, 109–114 (2010)

    Article  CAS  Google Scholar 

  23. Cui, H.F., Ye, J.S., Zhang, W.D., et al.: Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Biosens. Bioelectron. 24, 1723–1729 (2009)

    Article  CAS  Google Scholar 

  24. Zhao, H.T., Ju, H.X.: Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem. 350, 138–144 (2006)

    Article  CAS  Google Scholar 

  25. Jie, G.F., Li, L.L., Chen, C., et al.: Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron. 24, 3352–3358 (2009)

    Article  CAS  Google Scholar 

  26. Pinijsuwan, S., Rijiravanich, P., Somasundrum, M., et al.: Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification. Anal. Chem. 80, 6779–6784 (2008)

    Article  CAS  Google Scholar 

  27. Meiser, F., Cortez, C., Caruso, F.: Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem. Int. Ed. 43, 5954–5957 (2004)

    Article  CAS  Google Scholar 

  28. Ding, L., Ji, Q.J., Qian, R.C., et al.: Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal. Chem. 82, 1292–1298 (2010)

    Article  CAS  Google Scholar 

  29. Cheng, W., Ding, L., Ding, S.J., et al.: A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 48, 6465–6468 (2009)

    Article  CAS  Google Scholar 

  30. Hu, K.C., Lan, D.X., Li, X.M., et al.: Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 80, 9124–9130 (2008)

    Article  CAS  Google Scholar 

  31. Cheng, L.X., Liu, X., Lei, J.P., et al.: Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal. Chem. 82, 3359–3364 (2010)

    Article  CAS  Google Scholar 

  32. Zhao, W.A., Chiuman, W., Lam, J.C.F., et al.: DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc. 130, 3610–3618 (2008)

    Article  CAS  Google Scholar 

  33. Zhang, J., Lei, J.P., Xu, C.L., et al.: Carbon nanohorn sensitized electrochemical immunosensor­ for rapid detection of microcystin-LR. Anal. Chem. 82, 1117–1122 (2010)

    Article  CAS  Google Scholar 

  34. Yu, X., Munge, B., Patel, V., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)

    Article  CAS  Google Scholar 

  35. Lee, J.H., Wernette, D.P., Yigit, M.V., et al.: Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew. Chem. Int. Ed. 46, 9006–9010 (2007)

    Article  CAS  Google Scholar 

  36. Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001)

    CAS  Google Scholar 

  37. Oria, L., Aguado, R., Pomposo, J.A., et al.: A versatile “click” chemistry precursor of functional polystyrene nanoparticles. Adv. Mater. 22, 3038–3041 (2010)

    Article  CAS  Google Scholar 

  38. Krovi, S.A., Smith, D., Nguyen, S.T.: “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization. Chem. Commun. 46, 5277–5279 (2010)

    Article  CAS  Google Scholar 

  39. Gallant, N.D., Lavery, K.A., Amis, E.J., et al.: Universal gradient substrates for “click” biofunctionalization. Adv. Mater. 19, 965–969 (2007)

    Article  CAS  Google Scholar 

  40. Kamphuis, M.M.J., Johnston, A.P.R., Such, G.K., et al.: Targeting of cancer cells using click-functionalized polymer capsules. J. Am. Chem. Soc. 132(45), 15881–15883 (2010)

    Article  CAS  Google Scholar 

  41. Qin, G.T., Santos, C., Zhang, W., et al.: Biofunctionalization on alkylated silicon substrate surfaces via “click” chemistry. J. Am. Chem. Soc. 132(46), 16432–16441 (2010)

    Article  CAS  Google Scholar 

  42. Zhao, Y.L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)

    Article  CAS  Google Scholar 

  43. Tu, W.W., Lei, J.P., Ju, H.X.: Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive biosensing of trichloroacetic acid. Chem. Eur. J. 15, 779–784 (2009)

    Article  CAS  Google Scholar 

  44. Ju, S.Y., Papadimitrakopoulos, P.: Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 655–664 (2008)

    Article  CAS  Google Scholar 

  45. Williams, K.A., Veenhuizen, P.T.M., de la Torre, B.G., et al.: Carbon nanotubes with DNA recognition. Nature 420, 761 (2002)

    Article  CAS  Google Scholar 

  46. Du, D., Zou, Z.X., Shin, Y.S., et al.: Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem. 82, 2989–2995 (2010)

    Article  CAS  Google Scholar 

  47. Hong, S.Y., Tobias, G., Al-Jamal, K.T., et al.: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 9, 485–490 (2010)

    Article  CAS  Google Scholar 

  48. Weizmann, Y., Chenoweth, D.M., Swager, T.M.: Addressable terminally linked DNA-CNT nanowires. J. Am. Chem. Soc. 132, 14009–14011 (2010)

    Article  CAS  Google Scholar 

  49. Tu, W.W., Zhang, S.Y., Lei, J.P., et al.: Characterization, direct electrochemistry and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin. Chem. Eur. J. 16, 10771–10777 (2010)

    Article  CAS  Google Scholar 

  50. Xu, Y.X., Zhao, L., Bai, H., et al.: Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 131, 13490–13497 (2009)

    Article  CAS  Google Scholar 

  51. Chen, W., Bian, A., Agarwal, A., et al.: Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009)

    Article  CAS  Google Scholar 

  52. Zhao, W.A., Gao, Y., Kandadai, S.A., et al.: DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew. Chem. Int. Ed. 45, 2409–2413 (2006)

    Article  CAS  Google Scholar 

  53. Zhang, T.J., Wang, W., Zhang, D.Y., et al.: Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Funct. Mater. 20, 1152–1160 (2010)

    Article  CAS  Google Scholar 

  54. Khalap, V.R., Sheps, T., Kane, A.A., et al.: Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett. 10, 896–901 (2010)

    Article  CAS  Google Scholar 

  55. Cai, W.B., Shin, D.W., Chen, K., et al.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006)

    Article  CAS  Google Scholar 

  56. Sun, H., Choy, T.S., Zhu, D.R., et al.: Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens. Bioelectron. 24, 1405–1410 (2009)

    Article  CAS  Google Scholar 

  57. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  CAS  Google Scholar 

  58. Gao, J.H., Gu, H.W., Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)

    Article  CAS  Google Scholar 

  59. Zhuo, Y., Yuan, P.X., Yuan, R., et al.: Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30, 2284–2290 (2009)

    Article  CAS  Google Scholar 

  60. Bi, S., Yan, Y.M., Yang, X.Y., et al.: Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem. Eur. J. 15, 4704–4709 (2009)

    Article  CAS  Google Scholar 

  61. Mani, V., Chikkaveeraiah, B.V., Patel, V., et al.: Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3, 585–594 (2009)

    Article  CAS  Google Scholar 

  62. Weizmann, Y., Patolsky, F., Katz, E., et al.: Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. J. Am. Chem. Soc. 125, 3452–3454 (2003)

    Article  CAS  Google Scholar 

  63. Bi, S., Zhou, H., Zhang, S.S.: Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization. Chem. Commun. 37, 5567–5569 (2009)

    Article  CAS  Google Scholar 

  64. Li, J., Song, S.P., Liu, X.F., et al.: Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv. Mater. 20, 497–500 (2008)

    Article  CAS  Google Scholar 

  65. Kuschel, A., Sievers, H., Polarz, S.: Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew. Chem. Int. Ed. 47, 9513–9517 (2008)

    Article  CAS  Google Scholar 

  66. Wang, L., Yang, C.Y., Tan, W.H.: Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett. 5, 37–43 (2005)

    Article  CAS  Google Scholar 

  67. Vallet-Regí, M., Balas, F., Arcos, D.: Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46, 7548–7558 (2007)

    Article  CAS  Google Scholar 

  68. Wang, J., Liu, G.D., Engelhard, M.H., et al.: Sensitive immunoassay of a biomarker tumor necrosis factor-α based on poly(guanine)-functionalized silica nanoparticle label. Anal. Chem. 78, 6974–6979 (2006)

    Article  CAS  Google Scholar 

  69. Cha, B.H., Lee, S.M., Park, J.C., et al.: Detection of hepatitis B virus DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron. 25, 130–135 (2009)

    Article  CAS  Google Scholar 

  70. Wang, Y.S., Liu, B.: Label-free single-nucleotide polymorphism detection using a cationic tetrahedralfluorene and silica nanoparticles. Anal. Chem. 79, 7214–7220 (2007)

    Article  CAS  Google Scholar 

  71. Yang, X., Yuan, R., Chai, Y.Q., et al.: Ru(bpy) 2+3 -doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens. Bioelectron. 25, 1851–1855 (2010)

    Article  CAS  Google Scholar 

  72. Zanarini, S., Rampazzo, E., Ciana, L.D., et al.: Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. J. Am. Chem. Soc. 131, 2260–2267 (2009)

    Article  CAS  Google Scholar 

  73. Tang, D.P., Su, B.L., Tang, J., et al.: Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal. Chem. 82, 1527–1534 (2010)

    Article  CAS  Google Scholar 

  74. Zhong, Z.Y., Li, M.X., Xiang, D.B., et al.: Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels. Biosens. Bioelectron. 24, 2246–2249 (2009)

    Article  CAS  Google Scholar 

  75. Sardesai, N., Pan, S.M., Rusling, J.: Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chem. Commun. 33, 4968–4970 (2009)

    Article  CAS  Google Scholar 

  76. Wang, Y.Y., Liu, B.: Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens. Bioelectron. 24, 3293–3298 (2009)

    Article  CAS  Google Scholar 

  77. Wang, Y.Y., Liu, B.: Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25, 12787–12793 (2009)

    Article  CAS  Google Scholar 

  78. Pu, K.Y., Li, K., Liu, B.: Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv. Mater. 22, 643–646 (2010)

    Article  CAS  Google Scholar 

  79. Miao, W.J., Bard, A.J.: Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal. Chem. 76, 7109–7113 (2004)

    Article  CAS  Google Scholar 

  80. Yin, Z.Z., Cui, R.J., Liu, Y., et al.: Ultrasensitive electrochemical immunoassay based on cadmium ion-functionalized PSA@PAA nanospheres. Biosens. Bioelectron. 25, 1319–1324 (2010)

    Article  CAS  Google Scholar 

  81. Chang, H.X., Yuan, Y., Shi, N.L., et al.: Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal. Chem. 79, 5111–5115 (2007)

    Article  CAS  Google Scholar 

  82. Koplin, E., Niemeyer, C.M., Simon, U.: Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. J. Mater. Chem. 16, 1338–1344 (2006)

    Article  CAS  Google Scholar 

  83. Wei, F., Liao, W., Xu, Z., et al.: Bio/abiotic interface constructed from nanoscale DNA dendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small 5, 1784–1790 (2009)

    Article  CAS  Google Scholar 

  84. Cui, R.J., Liu, C., Shen, J.M., et al.: Gold nanoparticle–colloidal carbon nanosphere hybrid material: preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 18, 2197–2204 (2008)

    Article  CAS  Google Scholar 

  85. Ho, J.A., Lin, Y.C., Wang, L.S., et al.: Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal. Chem. 81, 1340–1346 (2009)

    Article  CAS  Google Scholar 

  86. Lim, D.K., Jeon, K.S., Kim, H.M., et al.: Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60–67 (2010)

    Article  CAS  Google Scholar 

  87. Ambrosi, A., Airò, F., Merkoçi, A.: Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 82, 1151–1156 (2010)

    Article  CAS  Google Scholar 

  88. Jung, Y.L., Jung, C., Parab, H., et al.: Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens. Bioelectron. 25, 1941–1946 (2010)

    Article  CAS  Google Scholar 

  89. Xu, W., Xue, X.J., Li, T.H., et al.: Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. 48, 6849–6852 (2009)

    Article  CAS  Google Scholar 

  90. Zheng, G.F., Daniel, W.L., Mirkin, C.A.: A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. J. Am. Chem. Soc. 130, 9644–9645 (2008)

    Article  CAS  Google Scholar 

  91. Xu, X.Y., Georganopoulou, D.G., Hill, H.D., et al.: Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes. Anal. Chem. 79, 6650–6654 (2007)

    Article  CAS  Google Scholar 

  92. Liang, C.H., Wang, C.C., Lin, Y.C., et al.: Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. Anal. Chem. 81, 7750–7756 (2009)

    Article  CAS  Google Scholar 

  93. Nam, J.M., Jang, K.J., Groves, J.T.: Detection of proteins using a colorimetric bio-barcode assay. Nat. Protoc. 2, 1438–1444 (2007)

    Article  CAS  Google Scholar 

  94. Nam, J.M., Wise, A.R., Groves, J.T.: Colorimetric bio-barcode amplification assay for cytokines. Anal. Chem. 77, 6985–6988 (2005)

    Article  CAS  Google Scholar 

  95. Kim, J.H., Chung, B.H.: Proteolytic fluorescent signal amplification on gold nanoparticles for a highly sensitive and rapid protease assay. Small 6, 126–131 (2010)

    Article  CAS  Google Scholar 

  96. Mu, C.J., LaVan, D.A., Langer, R.S., et al.: Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. ACS Nano 4, 1511–1520 (2010)

    Article  CAS  Google Scholar 

  97. Wang, Y.S., Liu, B., Mikhailovsky, A., et al.: Conjugated polyelectrolyte–metal nanoparticle platforms for optically amplified DNA detection. Adv. Mater. 22, 656–659 (2010)

    Article  CAS  Google Scholar 

  98. Li, J.S., Zhang, T.R., Ge, J.P., et al.: Fluorescence signal amplification by cation exchange in ionic nanocrystals. Angew. Chem. Int. Ed. 48, 1588–1591 (2009)

    Article  CAS  Google Scholar 

  99. Li, J.S., Schachermeyer, S., Wang, Y., et al.: Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Anal. Chem. 81, 9723–9729 (2009)

    Article  CAS  Google Scholar 

  100. Zhang, C.Y., Yeh, H.C., Kuroki, M.T., et al.: Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–831 (2005)

    Article  CAS  Google Scholar 

  101. Bailey, V.J., Easwaran, H., Zhang, Y., et al.: MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res. 19, 1455–1461 (2009)

    Article  CAS  Google Scholar 

  102. Edgar, R., McKinstry, M., Hwang, J., et al.: High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. PNAS 103, 4841–4845 (2006)

    Article  CAS  Google Scholar 

  103. Agrawal, A., Zhang, C.Y., Byassee, T., et al.: Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal. Chem. 78, 1061–1070 (2006)

    Article  CAS  Google Scholar 

  104. Agrawal, A., Deo, R., Wang, G.D., et al.: Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. PNAS 105, 3298–3303 (2008)

    Article  CAS  Google Scholar 

  105. Rodríguez-Lorenzo, L., Álvarez-Puebla, R.A., Pastoriza-Santos, I., et al.: Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009)

    Article  CAS  Google Scholar 

  106. Li, J.F., Huang, Y.F., Ding, Y., et al.: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010)

    Article  CAS  Google Scholar 

  107. Scodellern, P., Flexer, V., Szamocki, R., et al.: Wired-enzyme core-shell Au nanoparticle biosensor. J. Am. Chem. Soc. 130, 12690–12697 (2008)

    Article  CAS  Google Scholar 

  108. Singh, A.K., Senapati, D., Wang, S.G., et al.: Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 3, 1906–1912 (2009)

    Article  CAS  Google Scholar 

  109. Galanzha, E.I., Shashkov, E.V., Kelly, T., et al.: In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009)

    Article  CAS  Google Scholar 

  110. Osterfeld, S.J., Yu, H., Gaster, R.S., et al.: Multiplex protein assays based on real-time magnetic nanotag sensing. PNAS 105, 20637–20640 (2008)

    Article  CAS  Google Scholar 

  111. Yang, T., Zhou, N., Zhang, Y.C., et al.: Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens. Bioelectron. 24, 2165–2170 (2009)

    Article  CAS  Google Scholar 

  112. Das, J., Kim, H., Jo, K., et al.: Fast catalytic and electrocatalytic oxidation of sodium borohydride on palladium nanoparticles and its application to ultrasensitive DNA detection. Chem. Commun. 42, 6394–6396 (2009)

    Article  CAS  Google Scholar 

  113. Hansen, J.A., Mukhopadhyay, R., Hansen, J.Ø., et al.: Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. J. Am. Chem. Soc. 128, 3860–3861 (2006)

    Article  CAS  Google Scholar 

  114. Zhang, W., Yang, T., Huang, D.M., et al.: Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J. Membr. Sci. 325, 245–251 (2008)

    Article  CAS  Google Scholar 

  115. Zhou, X.M., Xing, D., Zhu, D.B., et al.: Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Anal. Chem. 81, 255–261 (2009)

    Article  CAS  Google Scholar 

  116. Shan, Y., Xu, J.J., Chen, H.Y.: Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem. Commun. 8, 905–907 (2009)

    Article  CAS  Google Scholar 

  117. Zhu, D.B., Tang, Y.B., Xing, D., et al.: PCR-free quantitative detection of genetically modified organism from raw materials: an electrochemiluminescence-based bio bar code method. Anal. Chem. 80, 3566–3571 (2008)

    Article  CAS  Google Scholar 

  118. Zhang, S.S., Zhong, H., Ding, C.F.: Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Anal. Chem. 80, 7206–7212 (2008)

    Article  CAS  Google Scholar 

  119. Deng, C.Y., Chen, J.H., Nie, L.H., et al.: Sensitive bifunctional aptamer-based electrochemical­ biosensor for small molecules and protein. Anal. Chem. 81, 9972–9978 (2009)

    Article  CAS  Google Scholar 

  120. Das, J., Aziz, M.A., Haesik Yang, H.: A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc. 128, 16022–16023 (2006)

    Article  CAS  Google Scholar 

  121. Nie, H.G., Liu, S.J., Yu, R.Q., et al.: Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew. Chem. Int. Ed. 48, 9862–9866 (2009)

    Article  CAS  Google Scholar 

  122. Wu, Z., Zhen, Z., Jiang, J.H., et al.: Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J. Am. Chem. Soc. 131, 12325–12332 (2009)

    Article  CAS  Google Scholar 

  123. Cheng, W., Ding, L., Lei, J.P., et al.: Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal. Chem. 80, 3867–3872 (2008)

    Article  CAS  Google Scholar 

  124. Ding, L., Cheng, W., Wang, X.J., et al.: A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells. Chem. Commun. 46, 7161–7163 (2009)

    Article  CAS  Google Scholar 

  125. Han, E., Ding, L., Lian, H.Z., Ju, H.X.: Cytosensing and dynamic monitoring of cell surface carbohydrate expression by electrochemiluminescence of quantum dots. Chem. Commun. 46, 5446–5448 (2010)

    Article  CAS  Google Scholar 

  126. Zhang, M.G., Gorski, W.: Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 127, 2058–2059 (2005)

    Article  CAS  Google Scholar 

  127. Kong, R.M., Zhang, X.B., Zhang, L.L., et al.: An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chem. Commun. 37, 5633–5635 (2009)

    Article  CAS  Google Scholar 

  128. Zhu, Z.Q., Su, Y.Y., Li, J., et al.: Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81, 7660–7666 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Biofunctionalization of Nanomaterials. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_1

Download citation

Publish with us

Policies and ethics