Skip to main content

Perovskite Lead-Free Piezoelectric Ceramics

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Lead zirconate titanate (PZT)-based piezoelectric materials are the most widely used piezoelectric materials for electromechanical devices. However, due to the toxicity of lead, there is a strong interest in the development of environmental friendly lead-free piezoelectrics. Several classes of lead-free materials, such as barium titanate, bismuth and sodium titanate, potassium niobate (KNbO3) and their solid solutions, have been reported as alternatives to PZT, and they exhibit relatively high piezoelectricity through the compositional modifications, and, in some cases, comparable to those of PZT. However, solid solutions of these lead-free perovskite families are not yet suited to replace PZT because of their limited operational temperature range. This chapter reviews recent developments in lead-free piezoelectric materials. Origin of enhanced properties and thermal stability of these families are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58(4):1619–1625

    Article  Google Scholar 

  2. Birol H, Damjanovic D, Setter N (2006) Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc 26(6):861–866

    Article  Google Scholar 

  3. Buessem W, Cross A, Goswami A (1992) Phenomenological theory of high permittivity in fine-grained barium titanate. J Am Ceram Soc 49(1):279

    Google Scholar 

  4. Carl K, Hardtl K (1978) Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 17:473–486

    Article  Google Scholar 

  5. Cho K, Park H, Ahn C, Nahm S, Uchino K, Park S, Lee H (2007) Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 ceramics. J Am Ceram Soc 90(6):1946–1949

    Article  Google Scholar 

  6. Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W (2006) Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Mater Sci Eng B 131(1–3):83–87

    Article  Google Scholar 

  7. Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in potassium-sodium niobate system. J Am Ceram Soc 42:438–442

    Article  Google Scholar 

  8. Fu P, Xu Z, Chu R, Li W, Zang G, Hao J (2010) Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater Sci Eng B 167(3):161–166

    Article  Google Scholar 

  9. Guo Y, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121

    Article  Google Scholar 

  10. Guo Y, Kakimoto K, Ohsato H (2005) (K0.5Na0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59(2–3):241–244

    Article  Google Scholar 

  11. Haerdtl K (1982) Electrical and mechanical losses in ferroelectric ceramics. Ceram Int 8(4):121–127

    Article  Google Scholar 

  12. Hiruma Y, Nagata H, Takenaka T (2007) Phase-transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2493–2499

    Article  Google Scholar 

  13. Hiruma Y, Watanabe T, Nagata H, Takenaka T (2008) Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications. Jpn J Appl Phys 47(9):7659–7663

    Article  Google Scholar 

  14. Hiruma Y, Yoshii K, Nagata H, Takenaka T (2008) Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3-(Bi1/2A1/2)TiO3 (A = Li and K) lead-free ferroelectric ceramics. J Appl Phys 103(8):084121

    Article  Google Scholar 

  15. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li-and Tamodified (K0.5 Na0.5)NbO3 ceramics. Appl Phys Lett 87:182905

    Article  Google Scholar 

  16. Hu H, Zhu M, Xie F, Lei N, Chen J, Hou Y, Yan H (2009) Effect of Co2O3 additive on structure and electrical properties of 85(Bi1/2Na1/2)TiO3-12(Bi1/2K1/2)TiO3-3BaTiO3 lead-free piezoceramics. J Am Ceram Soc 92(9):2039–2045

    Article  Google Scholar 

  17. Ikegami S, Ueda T, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50(4):1060–1066

    Article  Google Scholar 

  18. Jaeger R, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213

    Article  Google Scholar 

  19. Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic, New York

    Google Scholar 

  20. Karaki T, Kang Y, Miyamoto T, Adachi M (2007) Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys 46(4):L97–L98

    Article  Google Scholar 

  21. Lang W, Xiao D, Dunmin L, Jianguo Z, Ping Y, Xiang L (2007) Temperature dependence of electric properties of [Bi0.5(Na1 − x Ag x )0.5]1 − y Ba y TiO3 ceramics. Jpn J Appl Phys 46(11):7382–7387

    Article  Google Scholar 

  22. Lee H, Kimura T (1998) Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate. J Am Ceram Soc 81(12):3228–3236

    Article  Google Scholar 

  23. Lei C, Ye Z (2008) Lead-free piezoelectric ceramics derived from the (K0.5Na0.5)NbO3-AgNbO3 solid solution system. Appl Phys Lett 93:042901

    Article  Google Scholar 

  24. Li H, Feng C, Xiang P (2003) Electrical properties of La3+-doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics. Jpn J Appl Phys 42:7387

    Article  Google Scholar 

  25. Li H, Feng C, Yao W (2004) Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition. Mater Lett 58(7–8):1194–1198

    Article  Google Scholar 

  26. Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709

    Article  Google Scholar 

  27. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602

    Article  Google Scholar 

  28. Lopatin S, Lupeiko T, Vasil’tsova T, Basenko N, Berlizev I (1988) Properties of bismuth titanate ceramic modified with group V and VI elements. Inorg Mater 24(9):1328–1330

    Google Scholar 

  29. Malic B, Bernard J, Holc J, Jenko D, Kosec M (2005) Alkaline-earth doping in (K0.5Na0.5)NbO3 based piezoceramics. J Eur Ceram Soc 25(12):2707–2711

    Article  Google Scholar 

  30. Malic B, Bernard J, Holc J, Kosec M (2005) Strontium doped (K0.5Na0.5)NbO3 based piezoceramics. Ferroelectrics 314(1):149–156

    Article  Google Scholar 

  31. Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1 − x Ta x )O3-K5.4CuTa10O29 ceramics. J Appl Phys 97(11):4105

    Article  Google Scholar 

  32. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43(10):7159–7163

    Article  Google Scholar 

  33. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 44(1A):258–263

    Article  Google Scholar 

  34. Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005) Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J Am Ceram Soc 88(5):1190–1196

    Article  Google Scholar 

  35. Matthias BT, Remeika JP (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82(5):727–729

    Article  Google Scholar 

  36. Nagata Y (2007) Investigation of phase transition temperatures on (Bi1/2Na1/2)TiO3(Bi1/2K1/2)TiO3 and (Bi1/2Na1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics by electrical measurements. Ferroelectrics 346:114–119

    Article  Google Scholar 

  37. Nanamatsu S, Kimura M, Kawamura T (1975) Crystallographic and dielectric properties of ferroelectric A2B2O7 (A = Sr, B = Ta, Nb) crystals and their solid solutions. J Phys Soc Jpn 38(3):817

    Article  Google Scholar 

  38. Okazaki K, Maiwa H (1992) Space charge effects on ferroelectric ceramic particle surfaces. Jpn J Appl Phys 31:3113–3116

    Article  Google Scholar 

  39. Park H, Ahn C, Song H, Lee J, Nahm S, Uchino K, Lee H (2006) Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl Phys Lett 89(6):2906

    Article  Google Scholar 

  40. Park H, Cho K, Paik D, Nahm S, Lee H, Kim D (2007) Microstructure and piezoelectric properties of lead-free (1-x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. J Appl Phys 102(12):4101

    Article  Google Scholar 

  41. Randall C, Kelnberger A, Yang G, Eitel R, Shrout T (2005) High strain piezoelectric multilayer actuators – a material science and engineering challenge. J Electroceramics 14(3):177–191

    Article  Google Scholar 

  42. Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3LiTaO3 solid solution system. Ferroelectrics 338(1):17–32

    Article  Google Scholar 

  43. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  Google Scholar 

  44. Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38:5564–5567

    Article  Google Scholar 

  45. Seungho P, Cheol-Woo A, Sahn N, Jae-Sung S (2004) Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 43:L1072–L1074

    Article  Google Scholar 

  46. Shrout T, Zhang S (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceramics 19(1):113–126

    Article  Google Scholar 

  47. Smith R, Welsh F (1971) Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 42(6):2219–2230

    Article  Google Scholar 

  48. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 2(11):2651–2654

    Google Scholar 

  49. Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S (2006) Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn J Appl Phys 45(1):L30–L32

    Article  Google Scholar 

  50. Takahashi H, Numamoto Y, Tani J, Tsurekawa S (2006) Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering. Jpn J Appl Phys 45(9B):7405–7408

    Article  Google Scholar 

  51. Takahashi S (1982) Effects of impurity doping in lead zirconate-titanate ceramics. Ferroelectrics 41(1):143–156

    Article  Google Scholar 

  52. Takahashi S, Hirose S (1992) Vibration-level characteristics of lead-zirconate-titanate ceramics. Jpn J Appl Phys 31:3055–3057

    Article  Google Scholar 

  53. Takahashi S, Hirose S (1993) Vibration-level characteristics for iron-doped lead-zirconate-titanate ceramic. Jpn J Appl Phys 32:2422–2425

    Article  Google Scholar 

  54. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239

    Article  Google Scholar 

  55. Takenaka T, Nagata H, Hiruma Y (2009) Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-and (Bi1/2K1/2)TiO3-based bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 56(8):1595–1610

    Article  Google Scholar 

  56. Uchino K, Zheng J, Joshi A, Chen Y, Yoshikawa S, Hirose S, Takahashi S, De Vries J (1998) High power characterization of piezoelectric materials. J Electroceramics 2(1):33–40

    Article  Google Scholar 

  57. Uchino K, Zheng J, Joshi A, Chen Y, Yoshikawa S, Hirose S, Takahashi S, Vries JD (1998) High power characterization of piezoelectric materials. J Electroceramics 2(1):33–40

    Article  Google Scholar 

  58. Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 98:014109

    Article  Google Scholar 

  59. Wang K, Li J, Liu N (2008) Piezoelectric properties of low-temperature sintered Li-modified (Na, K) NbO3 lead-free ceramics. Appl Phys Lett 93:092904

    Article  Google Scholar 

  60. Wang XX, Chan H, Choy CL (2005) (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics with simultaneous addition of CeO2 and La2O3. Appl Phys A Mater Sci Process 80(2):333–336

    Article  Google Scholar 

  61. Wood EA (1951) Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds. Acta Crystallogr 4(4):353–362

    Article  Google Scholar 

  62. Yoo J, Oh D, Jeong Y, Hong J, Jung M (2004) Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr. Mater Lett 58(29):3831–3835

    Article  Google Scholar 

  63. Yoon MS, Lee YG, Ur SC (2009) Effects of co-doped CaO/MnO on the piezoelectric/dielectric properties and phase transition of lead-free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics. J Electroceramics 23(2–4):564–571

    Article  Google Scholar 

  64. Zang G, Wang J, Chen H, Su W, Wang C, Qi P, Ming B, Du J, Zheng L, Zhang S, Shrout T (2006) Perovskite (Na0.5K0.5)1 − x (LiSb) x Nb1 − x O3 lead-free piezoceramics. Appl Phys Lett 88:212908

    Article  Google Scholar 

  65. Zhang B, Li J, Wang K, Zhang H (2006) Compositional dependence of piezoelectric properties in (Na x K1 − x )NbO3 lead-free ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(5):1605–1609

    Article  MathSciNet  Google Scholar 

  66. Zhang S, Lim JB, Lee HJ, Shrout TR (2009) Characterization of hard piezoelectric lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 56:1523–1527

    Article  Google Scholar 

  67. Zhang S, Shrout T, Nagata H, Hiruma Y, Takenaka T (2007) Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):910–917

    Article  Google Scholar 

  68. Zhang S, Xia R, Hao H, Liu H, Shrout T (2008) Mitigation of thermal and fatigue behavior in (K0.5Na0.5)NbO3-based lead free piezoceramics. Appl Phys Lett 92:152–904

    Google Scholar 

  69. Zhang S, Xia R, Lebrun L, Anderson D, Shrout T (2005) Piezoelectric materials for high power, high temperature applications. Mater Lett 59(27):3471–3475

    Article  Google Scholar 

  70. Zhang S, Xia R, Shrout T (2007) Lead-free piezoelectric ceramics vs PZT? J Electroceramics 19(4):251–257

    Article  Google Scholar 

  71. Zhang S, Xia R, Shrout T (2007) Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913

    Article  Google Scholar 

  72. Zhang S, Xia R, Shrout T, Zang G, Wang J (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Article  Google Scholar 

  73. Zhang S, Xia R, Shrout TR, Zang G, Wang J (2007) Characterization of lead free (Na0.5K0.5)NbO3-LiSbO3 piezoceramic. Solid State Commun 141:675–679

    Article  Google Scholar 

  74. Zuo R, Rodel J, Chen R, Li L (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89(6):2010–2015

    Article  Google Scholar 

  75. Zuo R, Ye C, Fang X (2007) Dielectric and piezoelectric properties of lead free (Na0.5K0.5)NbO3BiScO3 ceramics. Jpn J Appl Phys 46(10A):6733–6736

    Article  Google Scholar 

  76. Zuo R, Ye C, Fang X, Li J (2008) Tantalum doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoelectric ceramics. J Eur Ceram Soc 28(4):871–877

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Thomas R. Shrout for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, H.J., Zhang, S. (2012). Perovskite Lead-Free Piezoelectric Ceramics. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics