Advertisement

Sodium Bismuth Titanate-Based Ceramics

Chapter

Abstract

Dielectric, ferroelectric, and piezoelectric properties including phase transition temperatures of perovskite-type bismuth sodium titanate, (Bi1/2Na1/2)TiO3 [BNT]-based lead-free piezoelectric ceramics have been reviewed from the results obtained by our group being superior candidates for lead-free piezoelectric materials to reduce environmental damage. Perovskite-type ceramics seem to be suitable for actuator and high-power applications that require a large piezoelectric constant, d 33, and a high Curie temperature, T c, or a depolarization temperature, T d (>200°C).

The x wt.% Bi-excess BNT-x and hot-pressed (HP) BNT ceramics were prepared and investigated to estimate piezoelectric properties of the BNT ceramic. In the case of x(Bi1/2Na1/2)TiO3-y(Bi1/2K1/2)TiO3-zBaTiO3, [x + y + z = 1, y:z = 2:1, BNBK2:1(x)], the d 33 are 126, 181, and 80 pC/N for x = 0.78, 0.88, and 0.98, respectively. The depolarization temperature T d, rhombohedral-tetragonal phase transition temperature T R–T and the temperature of the maximum dielectric constant T m were determined from the temperature dependence of the dielectric and piezoelectric properties.

(1 − x)(Bi0.5Na0.5)TiO3-xSrTiO3 [BNST100x] forms a morphotropic phase boundary (MPB) of rhombohedral ferroelectric and pseudocubic (tetragonal) paraelectric at x = 0.26–0.28 for BNST100x, and demonstrates a very large strain and a normalized strain \( d_{{33}}^{*} \) of 0.29% and 488 pm/V, respectively, for x = 0.28. In addition, it was clarified that the intermediate phase between T R–T (≥T d) and T m shows relaxor behavior.

The T d of (1 − x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 (BNKT100x) and (1 − x)(Bi1/2Na1/2)TiO3x(Bi1/2Li1/2)TiO3 (BNLT100x) increased to 199 and 209°C, respectively, at the rhombohedral composition. The T d is related to the magnitude of the rhombohedrality 90°-α and the tetragonality c/a. Moreover, we discussed the ferroelectricity of the middle phases of T d-T R–T and T R–T-T m. The X-ray powder diffraction patterns of a(Bi1/2Na1/2)TiO3-b(Bi1/2Li1/2)TiO3c(Bi1/2K1/2)TiO3 [a + b + c = 1] (BNLKT100b-100c) show the MPB between rhombohedral and tetragonal phases. The k 33, the d 33 and the T d of BNLKT4-20 and BNLKT8-20 were 0.603, 176 pC/N and 171°C, and 0.590, 190 pC/N, and 115°C, respectively. On the other hand, the d 33 and T d of BNLKT4-28 were 135 pC/N and 218°C, respectively. Considering both high T d and high d 33, the tetragonal compositions of BNLKT4-100c are thought to be the superior candidate. Also the effects of Mn doping on the variations in the T d and piezoelectric properties including high-power characteristics were investigated using rhombohedral BNLKT4-8. The Q m of w wt.% MnCO3-doped BNLKT4-8 (BNLKT4-8Mnw) markedly increased with increasing Mn concentration w, while T d, coupling factor k 33, and d 33 slightly decreased. The high-power characteristics of BNLKT4-8Mn0.6 were superior to those of hard PZT at a vibration velocity v 0–p > 0.6 m/s. Therefore, a Mn-doped BNT-based solid solution with rhombohedral symmetry is a promising candidate for lead-free high-power applications.

Solid solution, (1 − x)(Bi1/2K1/2)TiO3-xBaTiO3 [BKT-BT100x], seems to be lead-free piezoelectric ceramics with wide working temperatures. The BKT-BT80 + MnCO3 (0.1 wt.%) shows the higher T c than 200°C and the coupling factor of k 33 = 0.35. The BKT-BT100x ceramics (x = 0–0.4) indicated high depolarization temperatures, T d, around 300°C. From these results, BKT-BT system is considered the superior candidate of lead-free piezoelectric materials for high-power and/or high-temperature applications.

Keywords

Phase Transition Temperature Piezoelectric Property Morphotropic Phase Boundary Depolarization Temperature Morphotropic Phase Boundary Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J Phys Soc Jpn 8:615–629CrossRefGoogle Scholar
  2. 2.
    Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25:809–810CrossRefGoogle Scholar
  3. 3.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New York, p 142Google Scholar
  4. 4.
    Yamamoto T (1996) Ferroelectric properties of the PbZrO3-PbTiO3 system. Jpn J Appl Phys 35(9B):5104–5108CrossRefGoogle Scholar
  5. 5.
    Takenaka T (1999) Piezoelectric properties of some lead-free ferroelectric ceramics. Ferroelectrics 230:87–98CrossRefGoogle Scholar
  6. 6.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead free piezoceramics. Nature 42:84–87CrossRefGoogle Scholar
  7. 7.
    Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25(12):2693–2700CrossRefGoogle Scholar
  8. 8.
    Takenaka T, Nagata H, Hiruma Y (2008) Current developments and prospective of lead-free piezoelectric ceramics. Jpn J Appl Phys 47:3787–3801CrossRefGoogle Scholar
  9. 9.
    Shimamura K, Takeda H, Kohno T, Fukuda T (1996) Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J Crystal Growth 163:388–392CrossRefGoogle Scholar
  10. 10.
    Von Hippel A (1946) J Ind Eng Chem 28:1097CrossRefGoogle Scholar
  11. 11.
    Robert S (1947) Dielectric and piezoelectric properties of barium titanate. Phys Rev 71:890–895CrossRefGoogle Scholar
  12. 12.
    Mathias BT, Remeika JP (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82:727–729CrossRefGoogle Scholar
  13. 13.
    Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42:438–442CrossRefGoogle Scholar
  14. 14.
    Smolensky GA, Isupov VA, Agranovskaya AI, Krainic NN (1961) New ferroelectrics of complex composition. IV. Soviet Phys Solid State 2(11):2651–2654Google Scholar
  15. 15.
    Buhrer CF (1962) Some properties of bismuth perovskites. J Chem Phys 36(3):798–803CrossRefGoogle Scholar
  16. 16.
    Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213CrossRefGoogle Scholar
  17. 17.
    Sakata K, Masuda Y (1974) Ferroelectric and antiferroelectric properties of (Bi1/2Na1/2)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7:347–349CrossRefGoogle Scholar
  18. 18.
    Suchanicz J, Roleder K, Kania A, Handerek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 77:107–110CrossRefGoogle Scholar
  19. 19.
    Takenaka T, Sakata K (1988) New piezo- and pyroelectric sensor materials of (BiNa)1/2TiO3-based ceramics. Sensor Mater 1:123–131Google Scholar
  20. 20.
    Takenaka T, Sakata K (1989) Dielectric, piezoelectric and pyroelectric properties of (BiNa) 1/2TiO3-based ceramics. Ferroelectrics 95:153–156CrossRefGoogle Scholar
  21. 21.
    Takenaka T, Sakata K, Toda K (1990) Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics. Ferroelectrics 106:375–380CrossRefGoogle Scholar
  22. 22.
    Takenaka T, Maruyama K, Sakata K (1991) (Bi, Na)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239CrossRefGoogle Scholar
  23. 23.
    Takenaka T, Hozumi A, Hata T, Sakata K (1993) Mechanical properties of (Bi1/2Na1/2)TiO3-based piezoelectric ceramics. Silicate Indus Ceram Sci Technol 58(7–8):136–142Google Scholar
  24. 24.
    Nagata H, Takenaka T (1997) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–1/2(Bi2O3·Sc2O3) system. Jpn J Appl Phys 36:6055–6057CrossRefGoogle Scholar
  25. 25.
    Takenaka T, Okuda T, Takegahara K (1997) Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics 196:175–178CrossRefGoogle Scholar
  26. 26.
    Chiang Y-M, Farrey GW, Soukhojak AN (1998) Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family. Appl Phys Lett 73:3683–3685CrossRefGoogle Scholar
  27. 27.
    Nagata H, Takenaka T (1998) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3· Sc2O3) System. Jpn J Appl Phys 37:5311–5314CrossRefGoogle Scholar
  28. 28.
    Nagata H, Takenaka T (1998) (Bi1/2Na1/2)TiO3-based non-lead piezoelectric ceramics. J Korean Phys Soc 32:S1298–S1300Google Scholar
  29. 29.
    Takenaka T, Nagata H (1999) Ferroelectric and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3·Sc2O3) ceramics. In: Proceedings of the 11th IEEE international symposium on the applications of ferroelectrics (ISAF XI ‘98) (IEEE Catalog No. 98CH36245), pp 559–562Google Scholar
  30. 30.
    Nagata H, Koizumi N, Takenaka T (1999) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3-BiFeO3 system. Ferroelectrics 229:273–278CrossRefGoogle Scholar
  31. 31.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi, Na)TiO3-(Bi, K)TiO3 systems. Jpn J Appl Phys 38(9B):5564–5567CrossRefGoogle Scholar
  32. 32.
    Ishii H, Nagata H, Takenaka T (2001) Morphotropic phase boundary and electrical properties of bismuth sodium titanate-potassium niobate solid-solution ceramics. Jpn J Appl Phys 40(9B):5660–5663CrossRefGoogle Scholar
  33. 33.
    Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn J Appl Phys 42(12):7401–7403CrossRefGoogle Scholar
  34. 34.
    Hiruma Y, Aoyagi R, Nagata H, Takenka T (2004) Piezoelectric properties of BaTiO3-(Bi1/2K1/2)TiO3 ferroelectric ceramics. Jpn J Appl Phys 43(11A):7556–7559CrossRefGoogle Scholar
  35. 35.
    Makiuchi Y, Aoyagi R, Hiruma Y, Nagata H, Takenaka T (2005) (Bi1/2Na1/2)TiO3- (Bi1/2K1/2)TiO3-BaTiO3-based lead-free piezoelectric ceramics. Jpn J Appl Phys 44(6B):4350–4353CrossRefGoogle Scholar
  36. 36.
    Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2005) Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 44(7A):5040–5044CrossRefGoogle Scholar
  37. 37.
    Nagata H, Shinya T, Hiruma Y, Takenaka T, Sakaguchi I, Haneda H (2005) Piezoelectric properties of bismuth sodium titanate ceramics. Ceram Trans 167:213–222Google Scholar
  38. 38.
    Yoshii K, Hiruma Y, Nagata H, Takenaka T (2006) Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 45(5B):4493–4496CrossRefGoogle Scholar
  39. 39.
    Hiruma Y, Makiuchi Y, Aoyagi R, Nagata H, Takenaka T (2005) Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 solid solution. Ceram Trans 174:139–146Google Scholar
  40. 40.
    Hiruma Y, Yoshii K, Aoyagi R, Nagata H, Takenaka T (2006) Piezoelectric properties and depolarization temperatures of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Key Eng Materials 320:23–26CrossRefGoogle Scholar
  41. 41.
    Hiruma Y, Nagata H, Takenaka T (2006) Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 45(9B):7409–7412CrossRefGoogle Scholar
  42. 42.
    Zhang S, Shrout TR, Nagata H, Hiruma Y, Takenaka T (2007) Piezoelectric properties in (K0.5Bi0.5)TiO3-(Na0.5Bi0.5)TiO3-BaTiO3 lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):910–917CrossRefGoogle Scholar
  43. 43.
    Hiruma Y, Nagata H, Takenaka T (2007) Phase-transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2493–2499CrossRefGoogle Scholar
  44. 44.
    Takenaka T, Nagata H, Hiruma Y, Yoshii K, Matsumoto K (2007) Lead-free piezoelectric ceramics based on perovskite structures. J Electroceramics 19:259–265CrossRefGoogle Scholar
  45. 45.
    Hiruma Y, Watanabe Y, Nagata H, Takenaka T (2007) Phase transition temperatures of divalent and trivalent ions substituted (Bi1/2Na1/2)TiO3 ceramics. Key Eng Materials 350:93–96CrossRefGoogle Scholar
  46. 46.
    Kimura M, Minamikawa T, Ando A, Sakabe Y (1997) Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics. Jpn J Appl Phys 36:6051–6054CrossRefGoogle Scholar
  47. 47.
    Doshida Y, Kishimoto S, Ishii K, Kishi H, Tamura H, Tomikawa Y, Hirose S (2007) Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics. Jpn J Appl Phys 46:4921–4925CrossRefGoogle Scholar
  48. 48.
    Ikegami S, Ueda I (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13(10):1572–1579CrossRefGoogle Scholar
  49. 49.
    Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19(1):31–39CrossRefGoogle Scholar
  50. 50.
    Takenaka T, Sakata K (1984) Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb(1-x)(NaCe)x/2Bi4Ti4O15 solid solution. J Appl Phys 55(4):1092–1099CrossRefGoogle Scholar
  51. 51.
    Takenaka T, Sakata K (1989) Piezoelectric and pyroelectric properties of calcium-modified and grain-oriented (NaBi)1/2Bi4Ti4O15 ceramics. Ferroelectrics 94:175–181CrossRefGoogle Scholar
  52. 52.
    Takenaka T (2002) Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric ceramics. J Ceram Soc Jpn 110(4):215–224CrossRefGoogle Scholar
  53. 53.
    Zuo-Guang Ye (ed) (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials (Part VII novel processing and new materials, No. 27 “Grain orientation and electrical properties of bismuth layer-structure ferroelectrics”), Woodhead Publishing Limited, CRC Press LLC, pp 818–851Google Scholar
  54. 54.
    Park S-E, Chung S-J (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Bi1/2Na1/2)TiO3. J Am Ceram Soc 77(10):2641–2647CrossRefGoogle Scholar
  55. 55.
    Pronin IP, Syrnikov PP, Isupov VA, Egorov VM, Zaitseva NV, Ioffe AF (1980) Peculiarities of phase transitions in sodium-bismuth titanate. Ferroelectrics 25:395–397CrossRefGoogle Scholar
  56. 56.
    Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) X-ray study of phase transition in ferroelectric (Bi0.5Na0.5)TiO3. Ferroelectrics 40:75–77CrossRefGoogle Scholar
  57. 57.
    Yi JY, Lee J-K, Hong K-S (2003) Dependence of the microstructure and the electrical properties of lanthanum-substituted (Bi1/2Na1/2)TiO3 on cation vacancies. J Am Ceram Soc 85(12):3004–3010CrossRefGoogle Scholar
  58. 58.
    Herabut A, Safari A (1997) Processing and electrochemical properties of (Bi1/2Na1/2)1-1.5xLaxTiO3 ceramics. J Am Ceram Soc 80(11)Google Scholar
  59. 59.
    Watanabe Y, Hiruma Y, Nagata H, Takenaka T (2008) Phase transition temperatures and electrical properties of divalent Ions (Ca2+, Sr2+ and Ba2+) substituted (Bi1/2Na1/2)TiO3 ceramics. Ceram Int 34(4):761–764CrossRefGoogle Scholar
  60. 60.
    Wang XX, Tang XG, Chan HLW (2004) Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl Phys Lett 85(1):91–93CrossRefGoogle Scholar
  61. 61.
    Lin D, Xiao D, Zhu J, Yu P (2006) Piezoelectric and ferroelectric properties of (Bi1-x-yKx Liy)0.5TiO3 lead free piezoelectric ceramics. Appl Phys Lett 88 art. no. 062901Google Scholar
  62. 62.
    Hiruma Y, Yoshii K, Nagata H, Takenaka T (2007) Investigation of phase transition temperatures on (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 and (Bi1/2Na1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics by electrical measurements. Ferroelectrics 346:114–119CrossRefGoogle Scholar
  63. 63.
    Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl Phys Lett 92:262904CrossRefGoogle Scholar
  64. 64.
    Hiruma Y, Yoshii K, Nagata H, Takenaka T (2008) Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3-(Bi1/2 A 1/2)TiO3 (A = Li and K) lead-free ferroelectric ceramics. J Appl Phys 103:084121CrossRefGoogle Scholar
  65. 65.
    Siny IG, Tu C-S, Schmidt VH (1995) Critical acoustic behavior of the relaxor ferroelectric Na1/2Bi1/2TiO3 in the intertransition region. Phys Rev B 51:5659–5665CrossRefGoogle Scholar
  66. 66.
    Tsurumi T, Sasaki T, Kakemoto H, Harigai T, Wada S (2004) Domain contribution to direct and converse piezoelectric effects of PZT ceramics. Jpn J Appl Phys 43:7618–7622CrossRefGoogle Scholar
  67. 67.
    Hiruma Y, Watanabe T, Nagata H, Takenaka T (2008) Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications. Jpn J Appl Phys 47(9B):7659–7663CrossRefGoogle Scholar
  68. 68.
    Takahashi S, Hirose S (1992) Vibration-level characteristics of lead-zirconate-titanate ceramics. Jpn J Appl Phys 31:3055–3057CrossRefGoogle Scholar
  69. 69.
    Hirose S, Magami N, Takahashi S (1996) Piezoelectric ceramic transformer using piezoelectric lateral effect on input and on output. Jpn J Appl Phys 35:3038–3041CrossRefGoogle Scholar
  70. 70.
    Tashiro S, Ikehiro M, Igarashi H (1997) Influence of temperature rise and vibration level on electromechanical properties of high-power piezoelectric ceramics. Jpn J Appl Phys 36:3004–3009CrossRefGoogle Scholar
  71. 71.
    Umeda M, Nakamura K, Ueha S (1998) The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response. Jpn J Appl Phys 37:5322–5325CrossRefGoogle Scholar
  72. 72.
    Kawada S, Ogawa H, Kimura M, Shiratsuyu K, Niimi H (2006) High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics. Jpn J Appl Phys 45:7455–7459CrossRefGoogle Scholar
  73. 73.
    Kawada S, Ogawa H, Kimura M, Shiratsuyu K, Higuchi Y (2007) Relationship between vibration direction and high-power characteristics of <001 > -textured SrBi2Nb2O9 ceramics. Jpn J Appl Phys 46:7079–7083CrossRefGoogle Scholar
  74. 74.
    Nagata H, Takenaka T (2001) Effects of substitution on electrical properties of (Bi1/2Na1/2)TiO3-based lead-free ferroelectrics. In: Proceedings of the 12th IEEE international symposium on the applications of ferroelectrics (ISAF XII 2000) (IEEE Catalog No. 00CH37076), pp 45–51Google Scholar
  75. 75.
    Zhu M, Liu L, Hou Y, Wang H, Yan H (2007) Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J Am Ceram Soc 90:120–124CrossRefGoogle Scholar
  76. 76.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32(5):751–767MathSciNetGoogle Scholar
  77. 77.
    Watanabe Y, Hiruma Y, Nagata H, Takenaka T (2009) Fabrication and electrical properties of (Bi1/2Na1/2)TiO3-BiAlO3 ferroelectric ceramics. Key Eng Materials 388:229–232CrossRefGoogle Scholar
  78. 78.
    Gerthsen P, Härdtl KH, Schmidt NA (1980) Correlation of mechanical and electrical losses in ferroelectric ceramics. J Appl Phys 51:1131–1134CrossRefGoogle Scholar
  79. 79.
    Takahashi S (1982) Effects of impurity doping in lead zirconate-titanate ceramics. Ferroelectrics 41:143–156CrossRefGoogle Scholar
  80. 80.
    Hayashi K, Ando A, Hamaji Y, Sakabe Y (1998) Study of the valence state of the manganese ions in PbTiO3 ceramics by means of ESR. Jpn J Appl Phys 37:5237–5240CrossRefGoogle Scholar
  81. 81.
    Hiruma Y, Nagata H, Takenaka T (2007) Grain-size effect on electrical properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 46:1081–1084CrossRefGoogle Scholar
  82. 82.
    Takenaka T, Hiruma Y, Nemoto M, Nagata H (2008) Piezoelectric properties of (Bi1/2K1/2)TiO3 – BaTiO3 ceramics with wide working temperatures. In: Extended abstract of the 17th international symposium on the applications of ferroelectrics (ISAF 2008), PL002Google Scholar
  83. 83.
    Hiruma Y, Nagata H, Takenaka T (2004) Dielectric, ferroelectric and piezoelectric properties of barium titanate and bismuth potassium titanate solid-solution ceramics. J Ceram Soc Jpn 112(5):S1125–S1128Google Scholar
  84. 84.
    Ivanova VV, Kapyshev, AG, Veenevtsev YN, Zhdanov GS (1962) X-Ray Determination of the Symmetry of Elementary Cells of the Ferroelectric Materials (K0.5Bi0.5)TiO3 and (Na0.5Bi0.5)TiO3 and of High-Temperature Phase Transitions in (K0.5Bi0.5)TiO3. Akad Nauk SSSR 26:354Google Scholar
  85. 85.
    Nemoto M, Hiruma Y, Nagata H, Takenaka T (2008) Fabrication and piezoelectric properties of grain-oriented (Bi1/2K1/2)TiO3-BaTiO3 ceramics. Jpn J Appl Phys 47:3829–3832CrossRefGoogle Scholar
  86. 86.
    Takenaka T, Nagata H, Hiruma Y (2009) Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3-based perovskite lead-free ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 56(8):1595–1612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyTokyo University of ScienceNodaJapan

Personalised recommendations