Skip to main content

Alkali Niobate Piezoelectric Ceramics

  • Chapter
  • First Online:
Lead-Free Piezoelectrics
  • 2283 Accesses

Abstract

Piezoelectric ceramic materials are widely used in various electronic equipments [1–26]. Lead-based perovskite materials such as Pb(Ti, Zr)O3 (PZT), or PbTiO3-based materials are commonly used there. Piezoelectric properties of these lead-containing materials have been studied by a large number of researchers. On the other hand, environmental conscious (ECO) consideration grew up in the middle of 1990s especially in Europe. Alternatives for toxic lead-based piezoelectric ceramics have been studied by many researchers recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka T (1982) Piezoelectric devices in Japan. Ferroelectrics 40:167–187

    Google Scholar 

  2. Kawabata A, Ichinose N, Takahashi S (1998) Yasasii. Ultrasonic engineering [in Japanese] revised version. Kougyou Chousakai, Tokyo

    Google Scholar 

  3. Royer D, Dieulsaint E (2000) Elastic waves in solids II generation, acousto-optic interaction, applications, Chap. 4: Signal processing components and Chap. 5: Sensor and instrumentation. Springer, Berlin, translated from Ondes elastiques dans les solides. In: Tome 2 generation, interaction acousto-optique, applications, Masson, Paris, 1999

    Google Scholar 

  4. Ichinose N (ed) Atsuden seramikkusu shin-gijutsu [in Japanese] (New piezoelectric ceramic technologies) Ohmu-sha, Tokyo

    Google Scholar 

  5. Nihon Zairyou Kagaku Kai (ed) (1993) Kyou-Yuudensei to Kouon Choudendou (Ferroelectrics and high temperature superconductors). Shoukabou, Tokyo

    Google Scholar 

  6. Takahashi S (1993) Multilayer piezo-ceramic actuators and their applications. In: Setter N, Colla EL (eds) Ferroelectric ceramics. Birkhäuser, Basel, pp 349–362

    Google Scholar 

  7. Nomura S, Uchino K (1985) Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-type materials. In: Taylor GW, Gagnepain JJ, Meeker TR, Nakamura T, Shuvalov LA (eds) Piezoelectricity. McGraw-Hill, New York, pp 151–166

    Google Scholar 

  8. Uchino K (1986) Electrostrictive actuators: materials and applications. Am Ceram Soc Bull 65:647–652

    Google Scholar 

  9. Vazquez A, Uchino K (2001) Novel piezoelectric-based power supply for driving piezoelectric actuators designed for active vibration damping applications. J Electroceramics 7:197–210

    Google Scholar 

  10. Keeling MR (1981) Ink jet printing. Phys Technol 12:196–203

    Google Scholar 

  11. Wersing W (2002) Applications of piezoelectric materials: an introductory review. In: Setter N (ed) Piezoelectric materials in devices. EPFL, Lausanne, pp 29–66

    Google Scholar 

  12. Komai H, Hirata T, Inada T, Nakano T, Kadonaga M (1992) Ink jet recording device. Japan Patent 2957683

    Google Scholar 

  13. Sonehara H (1992) Ink jet type printing head. Japan Patent 2987944

    Google Scholar 

  14. Schuh C, Lubitz K, Steinkopff TH, Wolff A (2000) Piezoelectric components for technical applications. In: Galassi C, Dinescu M, Uchino K, Sayer M (eds) Piezoelectric materials. Kluwer, Dordrecht, pp 391–399

    Google Scholar 

  15. Lubitz K, Schuh C, Steinkopff T, Wolff A (2002) Material aspects for reliability and life time of PZT multilayer actuators. In: Setter N (ed) Piezoelectric materials in devices. EPFL, Lausanne, pp 183–194

    Google Scholar 

  16. Claeyssen F, Le Letty R (2002) Performance and applications of actuators based on multilayered piezo ceramics and shell structures. In: Setter N (ed) Piezoelectric materials in devices. EPFL, Lausanne, pp 103–122

    Google Scholar 

  17. Zhu W, Wang Z, Yao K, Yao X (2002) Piezoelectric multilayer microactuators for high track density hard disk drives. Key Eng Mater 228–229:31–36

    Google Scholar 

  18. Kurihara K, Hida M, Umeyama S, Kondo M, Koganezawa S (2006) Rotating symmetrical piezoelectric microactuators for magnetic head drives. Jpn J Appl Phys 45(9B):7471–7474

    Google Scholar 

  19. Fuda Y, Ono H, Shiotani F, Kumasaka K (1995) Multilayer piezoelectric ceramic vibrator with internal electrodes. Jpn J Appl Phys 34:5270–5272

    Google Scholar 

  20. Fuda Y, Ono H, Kumasaka K, Katsuno T (1995) Multilayer ceramic transformer using transverse effect. Extended Abstract of the 7th US–Japan seminar on dielectric and piezoelectric ceramics, Tsukuba, Japan, November, pp. 129–136

    Google Scholar 

  21. Takami A (1999) Knocking sensor [in Japanese]. Mater Integr 12(9):23–27

    Google Scholar 

  22. Wakatsuki N (1999) Gyroscope for direction sensor and angular velocity sensor in automotives. Mater Integr 12(9):65–70

    Google Scholar 

  23. Ogiura M (1995) Surface mount type shock sensor [in Japanese]. Nyu Seramikkusu 8(6):39

    Google Scholar 

  24. Face BR, Boyd CD (2000) Self-powered trainable switching network. International patent WO-02/42873 (priority date: Nov 21, 2000)

    Google Scholar 

  25. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proc. the Second IEEE International Conference on Wearable Computing (ISWC) October, IEEE Computer Society, pp. 132–139

    Google Scholar 

  26. Paradiso JA, Feldmeier M (2001) A compact, wireless, self-powered pushbutton controller. Ubicomp 2001: Ubiquitous computing. In: Abowd GD, Brumitt B, Shafer SACM (eds). UBICOMP conference proceedings, Atlanta GA, Sept 2001, Springer, Berlin, pp. 299–304

    Google Scholar 

  27. Ikegami S, Ueda I (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13:1572

    Google Scholar 

  28. Takenaka T, Shoji K, Takai H, Sakata K (1976) Ferroelectric and dielectric properties of press forged Bi4Ti3O12 ceramics. In: Proc. 19th Jpn. Cong. Mat. Res, Tokyo, March 1976, pp. 230–233

    Google Scholar 

  29. Takenaka T, Sakata K (1981) Liquid phase sintering of grain-oriented ferroelectric ceramics in the bismuth layer structure oxides. Jpn J Appl Phys 20(Suppl 20–4):189–192

    Google Scholar 

  30. Ando A, Kimura M, Sakabe Y (1999) Energy trapping phenomenon of piezoelectric SrBi2Nb2O9 ceramics. Proc. The 11th IEEE Intl. Symp. Appl. Ferroelectrics, Montreux 1998, pp. 303–306

    Google Scholar 

  31. Ando A, Kimura M, Sawada T, Hayashi K, Sakabe Y (2002) Piezoelectric and ferroelectric properties of the modified SrBi2Nb2O9 ceramics. Ferroelectrics 268:65–70

    Google Scholar 

  32. Takenaka T (2002) Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric ceramics. J Ceram Soc Jpn 110:215–224

    Google Scholar 

  33. Ando A, Sawada T, Ogawa H, Kimura M, Sakabe Y (2002) Fine-tolerance resonator applications of bismuth-layer-structured ferroelectric ceramics. Jpn J Appl Phys 41:7057–7061

    Google Scholar 

  34. Ando A, Kimura M, Sakabe Y (2003) Piezoelectric resonance characteristics of SrBi2Nb2O9-based ceramics. J Appl Phys 42:520–525

    Google Scholar 

  35. Hirose M, Suzuki T, Oka H, Itakura K, Miyauchi Y, Tsukada T (1999) Piezoelectric properties of SrBi4Ti4O15-based ceramics. Jpn J Appl 38:5561

    Google Scholar 

  36. Oka H, Hirose M, Tsukada T, Watanabe Y, Nomura T (2000) Thickness-shear vibration mode characteristics of SrBi4Ti4O15-based ceramics. Jpn J Appl Phys 39:5613

    Google Scholar 

  37. Nanao M, Hirose M, Tukada T (2001) Piezoelectric properties of Bi3TiNbO9–BaBi2Nb2O9 ceramics. Jpn J Appl Phys 40:5727–5730

    Google Scholar 

  38. Shibata K, Shoji K, Sakata K (2001) Sr1-xCaxBi2Ta2O9 piezoelectric ceramics with high mechanical quality factor. Jpn J Appl Phys 40:5719–5721

    Google Scholar 

  39. Noguchi Y, Shimizu H, Miyayama M, Oikawa K, Kamiyama T (2001) Ferroelectric properties and structure distortion in a-site-modified SrBi2Ta2O9. Jpn J Appl Phys 40:5812–5815

    Google Scholar 

  40. Yokosuka M (2002) Dielectric and piezoelectric properties of Mn-Modified Bi4CaTi4O15 based ceramics. Jpn J Appl Phys 41:7123–7126

    Google Scholar 

  41. Demartin M, Damjanovic D (2002) Lead free piezoelectric materials. In: Setter N (ed) Piezoelectric materials in device. EPFL, Lausanne, pp 389–412

    Google Scholar 

  42. Sakata K, Masuda Y (1974) Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3–SrTiO3 solid solution ceramics. Ferroelectrics 7:347–349

    Google Scholar 

  43. Takenaka T, Sakata K (1989) Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics. Ferroelectrics 95:153–156

    Google Scholar 

  44. Takenaka T, Sakata K (1988) Grain-oriented and Mn-Doped (NaBi)(1-x)/2CaxBi4Ti4O15 ceramics for piezo- and pyrosensor materials. Sens Mater 1:35–46

    Google Scholar 

  45. Takenaka T, Sakata K, Toda K (1990) Piezoelectric properties of (Bi1/2Na1/2)Ti3 – based ceramics. Ferroelectrics 106:375–380

    Google Scholar 

  46. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239

    Google Scholar 

  47. Herabut A, Safari A (1997) Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 ceramics. J Am Ceram Soc 80:2954–2958

    Google Scholar 

  48. Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38:5564–5567

    Google Scholar 

  49. Nagata H, Koizumi N, Takenaka T (1999) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–BaTiO3–BiFeO3 system. Ferroelectrics 229:273–278

    Google Scholar 

  50. Nagata H, Koizumi N, Takenaka T (1999) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BiFeO3 system. In: Key engineering materials, vols. 169–170. Trans Tech, Switzerland, pp. 37–40

    Google Scholar 

  51. Lee J, Hong K, Kim C, Park S (2002) Phase transitions and dielectric properties in A-site ion substituted (Na1/2Bi1/2)TiO3 ceramics (A=Pb and Sr). J Appl Phys 91:4538–4542

    Google Scholar 

  52. Tani T, Fukuchi E, Kimura T (2002) Relationship between pre-sintering conditions and sintering behavior of Bi0.5(Na, K)0.5TiO3 ceramics textured by reactive templated grain growth method. Jpn Soc Powder Powder Metall 49:198–202

    Google Scholar 

  53. Tou T, Hamaguti Y, Maida Y, Yamamori H, Takahashi K, Terashima Y (2009) Properties of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 Lead-free piezoelectric ceramics and its application to ultrasonic cleaner. Jpn J Appl Phys 48:07GM03

    Google Scholar 

  54. Matthias BT (1949) New ferroelectric crystals. Phys Rev 75:1771

    Google Scholar 

  55. Matthias BT, Remeika JP (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82:727–729

    Google Scholar 

  56. Vousden P (1951) A study of the unit-cell dimensions and symmetry of certain ferroelectric compounds of niobium and tantalum at room temperature. Acta Cryst 4:373–376; Vousden P (1951) The structure of ferroelectric sodium niobate at room temperature Acta Cryst 4:545–551

    Google Scholar 

  57. Shirane G, Danner H, Pavlovic A, Pepinsky R (1954) Phase transitions in ferroelectric KNbO3. Phys Rev 93:672–673

    Google Scholar 

  58. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev 96:581–588

    Google Scholar 

  59. Cross LE, Nicholson BJ (1955) The optical and electrical properties of single crystals of sodium niobate. Philos Mag 46(4):53–466

    Google Scholar 

  60. Triebwasser S (1956) Behavior of ferroelectric KNbO3 in the vicinity of the cubic-tetragonal transition. Phys Rev 101:993–997

    Google Scholar 

  61. Egarton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42:438–442

    Google Scholar 

  62. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45:209–213

    Google Scholar 

  63. Dungan RH, Golding RD (1964) Metastable ferroelectric sodium niobate. J Am Ceram Soc 47:73–76

    Google Scholar 

  64. Dungan RH, Golding RD (1965) Golding polarization of NaNbO3-KNbO3 ceramic solid solutions. J Am Ceram Soc 48:601

    Google Scholar 

  65. Haertling GH (1967) Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 50:329–330

    Google Scholar 

  66. Nitta T (1968) Properties of sodium-lithium niobate solid solution ceramics with small lithium concentrations. J Am Ceram Soc 51:626–629

    Google Scholar 

  67. Nitta T, Miyazawa T (1971) You have full text access to this content X-ray and thermal-expansion study of an (Na0.88Li0.12)NbO3+6 mol% Li2O ceramic. J Am Ceram Soc 54:636–637

    Google Scholar 

  68. Yonezawa M, Ohno T (1975) Piezoelectric properties of KNbO3–NaNbO3–LiNbO3 ternary system ceramics [in Japanese]. Annual Report of Study Group on Applied Ferroelectrics in Japan, vol. 21, pp. 65–71

    Google Scholar 

  69. Henson RM, Zeyfang RR, Kiehl KV (1977) Dielectric and electromechanical properties of (Li, Na)NbO3 ceramics. J Am Ceram Soc 60:15–17

    Google Scholar 

  70. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700

    Google Scholar 

  71. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceram 19:111–124

    Google Scholar 

  72. Takenaka T, Nagata H, Hiruma Y, Oshii K, Matsumoto K (2007) Lead-free piezoelectric ceramics based on Pervskite structures. J Electroceram 19:259–265

    Google Scholar 

  73. Takenaka T, Nagata H, Hiruma Y (2008) Current developments and prospective of lead-free piezoelectric ceramics. Jpn J Appl Phys 47:3787–3801

    Google Scholar 

  74. Pardo L, Duran-Martin P, Millar CE, Wolny WW, Jimenez B (1996) High temperature electromechanical behaviour of sodium substituted lithium niobate ceramics. Ferroelectrics 186:281–285

    Google Scholar 

  75. Pardo L, Durán-Martin P, Mercurio JP, Nibou L, Jiménez B (1997) Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbO3-NaNbO3. J Phys Chem Solid 58:1335–1339

    Google Scholar 

  76. Kimura M, Ogawa T, Ando A (1998) Piezoelectric ceramic composition. Japan Patent Application 1998–35713 (equivalent to US Patent 6093339)

    Google Scholar 

  77. Kimura M, Ando A (1998) Piezoelectric ceramic composition. Japan Patent Application 1998–35714 (equivalent to US patent 6083415)

    Google Scholar 

  78. DiAntonio CB, Pilgrim SM (2001) Processing, characterization, and dielectric studies on K(Ta1−xNbx)O3 for use at cryogenic temperatures. J Am Ceram Soc 84:2547–2552

    Google Scholar 

  79. Reznitchenko LA, Turik AV, Kuznetsova EM, Sakhnenko VP (2001) Piezoelectricity in NaNbO3 ceramics. J Phys Condens Matter 13:3875–3881

    Google Scholar 

  80. Kimura M, Ogawa T, Ando A, Sakabe Y (2003) Piezoelectric properties of metastable (Li, Na)NbO3 ceramics. In: Proc. 13th IEEE international symposium on applications of ferroelectrics, Nara, Japan 2002, pp. 339–342

    Google Scholar 

  81. Kimura M, Ando A, Shiratsuyu K, Sakabe Y (2004) Piezoelectric properties of alkaline niobate perovskite ceramics. Trans Mater Res Soc Jpn 29:1049–1054

    Google Scholar 

  82. Kimura M, Kawada S, Shiratsuyu K, Ando A, Tamura H, Sakabe Y (2004) Piezoelectric properties and applications of high Qm (Li, Na)NbO3 ceramics after heat treatment. Key Eng Mater 269:3–6

    Google Scholar 

  83. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2003) Processing and characterization of newly piezoelectric (K,Na)(Nb,Ta)O3 ceramics [in Japanese]. In: Proc. Annual Meeting of the Ceramic Society of Japan, p. 133

    Google Scholar 

  84. Yoshida T, Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2004) Optimized fabrication process and electrical properties of KNbO3 ceramics [in Japanese]. In: Proc. The 17th Autumn Symposium of Ceramic society of Japan

    Google Scholar 

  85. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramic. Nature 432:84–87

    Google Scholar 

  86. Guo Y, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl Phys Lett 85:4121–4123

    Google Scholar 

  87. Guo Y, Kakimoto K, Ohsato H (2004) Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Jpn J Appl Phys 43:6662–6666

    Google Scholar 

  88. Sundarakannan B, Kakimoto K, Ohsato H (2004) Ti and V substitutions on the KNbO3 ceramics: dielectric study. Ferroelectrics 302:175–179

    Google Scholar 

  89. Masuda I, Kakimoto K, Ohsato H (2004) Ferroelectric property and crystal structure of KNbO3 based ceramics. J Electroceram 13:555–559

    Google Scholar 

  90. Kakimoto K, Masuda I, Ohsato H (2004) Solid-solution structure and piezoelectric property of KNbO3 ceramics doped with small amounts of elements. Jpn J Appl Phys 43:6706–6710

    Google Scholar 

  91. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43:7159–7163

    Google Scholar 

  92. Matubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 44:258–263

    Google Scholar 

  93. Matubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Jpn J Appl Phys 44:6136–6142

    Google Scholar 

  94. Matubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Synthesis and characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29. Jpn J Appl Phys 44:6618–6623

    Google Scholar 

  95. Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005) Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta) O3 ceramics. J Am Ceram Soc 88:1190–1196

    Google Scholar 

  96. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 87:182905

    Google Scholar 

  97. Guo Y, Kakimoto K, Ohsato H (2005) (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59:241–244

    Google Scholar 

  98. Birol H, Damjanovic D, Setter N (2005) Preparation and characterization of KNbO3 ceramics. J Am Ceram Soc 88:1754–1759

    Google Scholar 

  99. Kakimoto K, Masuda I, Ohsato H (2005) Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Euro Ceram Soc 25:2719–2722

    Google Scholar 

  100. Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Euro Ceram Soc 25:2701–2706

    Google Scholar 

  101. Malic B, Bernard J, Holc J, Jenko D, Kosec M (2005) Alkaline-earth doping in (K, Na)NbO3 based piezoceramics. J Euro Ceram Soc 25:2707–2711

    Google Scholar 

  102. Bobnar V, Malic B, Holc J, Kosec M, Steinhausen R, Beige H (2005) Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system. J Appl Phys 98:024113

    Google Scholar 

  103. Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics. J Appl Phys 97:114105

    Google Scholar 

  104. Zang GZ, Wang JF, Chen HC, Su WB, Wang CM, Qi P, Ming BQ, Du J, Zheng LM, Zhang S, Shrout TR (2006) Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl Phys Lett 88:212908

    Google Scholar 

  105. Lang SB, Zhu W, Cross LE (2006) Piezoelectric and pyroelectric properties of (K0.5Na0.5)1-x (Nb1- yTay) O3 ceramics. Ferroelectrics 336:15–21

    Google Scholar 

  106. Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338:17–32

    Google Scholar 

  107. Wang R, Tachibana N, Miura N, Hanada K, Matsusaki K, Bando H, Itoh M (2006) Effects of vacancies on the dielectric and piezoelectric properties of (Na0.5K0.5)NbO3-SrTiO3 solid solution. Ferroelectrics 331:135–139

    Google Scholar 

  108. Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89:706–709

    Google Scholar 

  109. Zhen Y, Li JF (2006) Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89:3669–3675

    Google Scholar 

  110. Zuo R, Rödel J, Chen R, Li L (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89:2010–2015

    Google Scholar 

  111. Birol H, Damjanovic D, Setter N (2006) Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Euro Ceram Soc 26:861–866

    Google Scholar 

  112. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2006) Piezoelectric properties of pure and Mn-doped potassium niobate ferroelectric ceramics. Jpn J Appl Phys 45:4479–4483

    Google Scholar 

  113. Uraki S (2006) Shear mode-type piezoelectric actuator and liquid droplet delivery head. International Patent WO-2008029573 (priority date: Sept 8 2006)

    Google Scholar 

  114. Pithan C, Shiratori Y, Magrez A, Mi SB, Dornseiffer J, Waser R (2006) Consolidation, microstructure and crystallography of dense NaNbO3 ceramics with ultra-fine grain size. J Ceram Soc Jpn 114:995–100

    Google Scholar 

  115. Hagh NM, Jadidian B, Safari A (2007) Property-processing relationship in lead-free (K, Na, Li)NbO3-solid solution system. J Electroceram 18:339–346

    Google Scholar 

  116. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2007) Piezoelectric properties of KNbO3 ceramics prepared by ordinary sintering. Ferroelectrics 358:169–174

    Google Scholar 

  117. Li E, Kakemoto H, Wada S, Tsurumi T (2007) Effect of small amount CuO doping on microstructure and properties of the alkaline niobate-based lead-free ceramics. Ferroelectrics 358:153–160

    Google Scholar 

  118. Zhang BP, Zhang LM, Li JF, Ding XN, Zhang HL (2007) Effect of sintering temperature on electrical properties of Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by normal sintering. Ferroelectrics 358:188–195

    Google Scholar 

  119. Zuo R, Fang X, Ye C, Li L (2007) Phase transitional behavior and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 ceramics. J Am Ceram Soc 90:2424–2428

    Google Scholar 

  120. Chang Y, Yang Z, Wei L (2007) Microstructure, density, and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics. J Am Ceram Soc 90:1656–1658

    Google Scholar 

  121. Lin D, Kwok KW, Tian H, Chan HWL (2007) “Phase transitions and electrical properties of (Na1−xKx)(Nb1−ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. J Am Ceram Soc 90:1458–1462

    Google Scholar 

  122. Li E, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90:1787–1791

    Google Scholar 

  123. Kim MS, Jeong SJ, Song JS (2007) Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J Am Ceram Soc 90:3338–3340

    Google Scholar 

  124. Park HY, Ahn CW, Cho KH, Nahm S, Lee HG, Kang HW, Kim DH, Park KS (2007) Low-temperature sintering and piezoelectric properties of CuO-Added 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. J Am Ceram Soc 90:4066–4069

    Google Scholar 

  125. Du H, Liu D, Tang F, Zhu D, Zhou W, Qu S (2007) Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J Am Ceram Soc 90:2824–2829

    Google Scholar 

  126. Li E, Kakemoto H, Wada S, Tsurumi T (2007) Effects of manganese addition on piezoelectric properties of the (K, Na, Li)(Nb, Ta, Sb)O3 lead-free ceramics. J Ceram Soc Jpn 115:250–253

    Google Scholar 

  127. Song HC, Cho KH, Park HY, Ahn CW, Nahm S, Uchino K, Park SH, Lee HG (2007) Microstructure and piezoelectric properties of (1−x)(Na0.5K0.5)NbO3–xLiNbO3 ceramics. J Am Ceram Soc 90:1812–1816

    Google Scholar 

  128. Li H, Shih WY, Shih WH (2007) Effect of antimony concentration on the crystalline structure, dielectric, and piezoelectric properties of (Na0.5K0.5)0.945Li0.055Nb1−xSbxO3 solid solutions. J Am Ceram Soc 90:3070–3072

    Google Scholar 

  129. Cho KH, Park HY, Ahn CW, Nahm S, Uchino K, Park SH, Lee HG, Lee HJ (2007) Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 ceramics. J Am Ceram Soc 90:1946–1949

    Google Scholar 

  130. Hollenstein E, Damjanovic D, Setter N (2007) Temperature stability of the piezoelectric properties of Li-modified KNN Ceramics. J Euro Ceram Soc 27:4093–4097

    Google Scholar 

  131. Higashide K, Kakimoto K, Ohsato H (2007) Temperature dependence on the piezoelectric property of (1-x)(Na0.5K0.5)NbO3-xLiNbO3 ceramics. J Euro Ceram Soc 27:4107–4110

    Google Scholar 

  132. Nagata H, Matsumoto K, Hirosue T, Hiruma Y, Takenaka T (2007) Fabrication and electrical properties of potassium niobate ferroelectric ceramics. Jpn J Appl Phys 46:7084–7088

    Google Scholar 

  133. Wu J, Peng T, Wang Y, Xiao D, Zhu J, Jin Y, Zhu J, Yu P, Wu L, Jiang Y (2008) Phase structure and electrical properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 lead-free piezoelectric ceramics. J Am Ceram Soc 91:319–321

    Google Scholar 

  134. Bomlai P, Sinsap P, Muensit S, Milne SJ (2008) Effect of MnO on the phase development, microstructures, and dielectric properties of 0.95Na0.5K0.5NbO3–0.05LiTaO3 ceramics. J Am Ceram Soc 91:624–627

    Google Scholar 

  135. Li E, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702–7706

    Google Scholar 

  136. Aoyagi R, Takeda A, Iwata M, Maeda M, Nishida T, Shiosaki T (2008) Depolarization temperature shift of Li0.08Na0.92NbO3 lead-free piezoelectric ceramics by high-electric-field poling. Jpn J Appl Phys 47:7689–7692

    Google Scholar 

  137. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2008) Electric-field-induced strain in Mn-doped KNbO3 ferroelectric ceramic. Ceram Int 34:787–791

    Google Scholar 

  138. Sasaki R, Suzuki R, Uraki S, Kakemoto H, Tsurumi T (2008) Low-temperature sintering of alkaline niobate based piezoelectric ceramics using sintering aids. J Ceram Soc Jpn 116:1182–1186

    Google Scholar 

  139. Suzuki R, Uraki S, Li E, Hoshina T, Tsurumi T (2008) Influence of Bi-perovskites on the piezoelectric properties of (K0.5Na0.5)NbO3-based lead free ceramics. J Ceram Soc Jpn 116:1199–1203

    Google Scholar 

  140. Tanaka D, Tsukada T, Furukawa M, Wada S, Kuroiwa Y (2009) Thermal reliability of alkaline niobate-based lead-free piezoelectric ceramics [in Japanese]. In: Proc. 26th Meeting on Ferroelectric materials and their application, Kyoto, Japan, pp. 33–34

    Google Scholar 

  141. Aoyagi R, Ohashi T, Iwata M, Maeda M (2009) Influence of (Li,Na)/Nb ratio in Electrical Properties of (Li,Na)NbO3 Lead-free Piezoelectric Ceramics [in Japanese]. In: Proc. the 22th Autumn Symposium of Ceramic society of Japan, p. 21

    Google Scholar 

  142. Kawada S, Kimura M, Higuchi Y, Takagi H (2009) (K, Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl Phys Expr 2:111401

    Google Scholar 

  143. Wang R, Bando H, Itoh M (2009) Formation of tetrogonal-rhombohedral morphotropic phase boundary in perovskite niobate. In: Proc. the 22th autumn symposium of the Ceramic Society of Japan, p. 20

    Google Scholar 

  144. Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid solution ceramics. J Appl Phys 25:809–810

    Google Scholar 

  145. Boudys M (1991) Relations between temperature coefficients of permittivity and elastic compliances in PZT ceramics near the morphotropic phase boundary. IEEE Trans Ultrason Ferroelectrics Freq Contr 38:569–571

    Google Scholar 

  146. Park HY, Ahn CW, Song HC, Lee JH, Nahm S, Uchino K, Lee HG, Lee HJ (2006) Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. Appl Phys Lett 89:062906

    Google Scholar 

  147. Park HY, Cho KH, Paik DS, Nahm S, Lee HG, Kim DH (2007) Microstructure and piezoelectric properties of lead-free (1−x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. J Appl Phys 102:124101

    Google Scholar 

  148. Zhao P, Zhang BP, Li JF (2007) High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 90:242909

    Google Scholar 

  149. Zhang S, Xia R, Shrout TR, Zang G, Wang J (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Google Scholar 

  150. Ahn C, Priya S (2009) KNN based lead-free piezoelectrics. Extended Abstract of the 14th US-Japan Seminar on Dielectric and Piezoelectric Materials, Welches, OR, pp. 288–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ando, A. (2012). Alkali Niobate Piezoelectric Ceramics. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics