Skip to main content

Lead-Free KNN-Based Piezoelectric Materials

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Lead-free piezoelectric materials have recently been given vast attention due to environmental issues and the toxicity of their lead-based counterparts. One of the potential lead-free candidates is the xKNbO3–(1−x)NaNbO3 binary system. The K0.5N0.5NbO3 composition in particular exhibits relatively high Curie temperature and the highest electromechaical and ferroelectric response among the possible K x Na1−x NbO3 compositions. The present chapter covers some fundamental issues regarding the crystal chemistry, material processing, and dielectric and ferroelectric behavior of KNN-based piezoelectrics. The topics discussed in this context fall into four categories: KNN-based polycrystalline ceramics, textured ceramics, single crystals, and thin films. The recent research activities concerning the most promising compositions, processing techniques, and some of the challenges encountered in obtaining high performance Pb-free piezoelectric materials have been reviewed for each category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, London

    Google Scholar 

  2. Katz L, Megaw HD (1967) The structure of potassium niobate at room temperature: the solution of a pseudosymmetric structure by Fourier methods. Acta Crystallogr 22:639–648

    Google Scholar 

  3. Nakamura K, Kawamura Y (2000) Orientation dependence of electromechanical coupling factors in KNbO3. IEEE Trans Ultrason Ferroelectr Freq Control 47:750–755

    Google Scholar 

  4. Kakimoto K, Masuda I, Ohsato HJ (2005) Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Eur Ceram Soc 25:2719–2722

    Google Scholar 

  5. Tashiro S, Nagamatsu H, Nagata K (2002) Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn J Appl Phys 41:7113–7118

    Google Scholar 

  6. Ishii H, Nagata H, Takenaka T (2001) Morphotropic phase boundary and electrical properties of bismuth sodium titanate-potassium niobate solid-solution ceramics. Jpn J Appl Phys 40:5660–5663

    Google Scholar 

  7. Baker DW, Thomas PA, Zhang N et al (2009) Structural study of KxNa1 − xNbO3 (KNN) for compositions in the range x = 0.24-0.36. Acta Crystallogr B 65:22–28

    Google Scholar 

  8. Wu L, Zhang JL, Wang CL et al (2008) Influence of compositional ratio K/Na on physical properties in KxNa1−xNbO3 ceramics. J Appl Phys 103:084116

    Google Scholar 

  9. Ringgaard E, Wurlitzer T (2005) Properties of lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 25:2701–2706

    Google Scholar 

  10. Rodel J, Jo W, Seifert KTP et al (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Google Scholar 

  11. Matsubara M, Yamaguchi T, Kikuta K (2005) Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Jpn J Appl Phys 44:6136–6142

    Google Scholar 

  12. Guo Y, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5 K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121–4123

    Google Scholar 

  13. Ahn CW, Park CS, Viehland D et al (2008) Correlation between phase transitions and piezoelectric properties in lead-free (K, Na, Li)NbO3-BaTiO3 ceramics. Jpn J Appl Phys 47:8880–8883

    Google Scholar 

  14. Jiang XP, Yang Q, Yu ZD et al (2010) Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5 K0.5)NbO3 lead-free piezoelectric ceramics. J Alloy Compd 493:276–280

    Google Scholar 

  15. Zuo R, Fang X, Ye C (2007) Phase structures and electrical properties of new lead-free (Na0.5 K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 90:092904

    Google Scholar 

  16. Du H, Zhou W, Zhu D et al (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc 91:2903–2909

    Google Scholar 

  17. Sutapun M, Huang CC, Cann D et al (2009) Phase transitional behavior and dielectric properties of lead free (1-x)(K0.5Na0.5)NbO3-xBi(Zn0.5Ti0.5)O3 ceramics. J Alloy Compd 479:462–466

    Google Scholar 

  18. Saito Y, Takao H, Tani T et al (2004) Lead-free piezoceramics. Nature 432:84–87

    Google Scholar 

  19. Jadidian B, Marandian Hagh N, Winder AA et al (2009) 25 MHz ultrasonic transducers with lead-free piezoceramic, 1–3 PZT fiber-epoxy composite, and PVDF polymer active elements. IEEE Trans Ultrason Ferroelectr Freq Control 56:368–378

    Google Scholar 

  20. Guo Y, Kakimoto K, Ohsato H (2004) (Na0.5 K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59:241–244

    Google Scholar 

  21. Saito Y, Takao H (2003) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338:17–32

    Google Scholar 

  22. Dai Y, Zhang X, Zhou G (2007) Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Appl Phys Lett 90:262903

    Google Scholar 

  23. Wang Y, Damjanovic D, Klein N et al (2007) Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J Am Ceram Soc 90:3485–3489

    Google Scholar 

  24. Wang Y, Damjanovic D, Klein N et al (2008) High-temperature instability of Li- and Ta-modified (K, Na)NbO3 Piezoceramics. J Am Ceram Soc 91:1962–1970

    Google Scholar 

  25. Zhang S, Xia R, Shrout TR et al (2007) Characterization of lead free (K0.5Na0.5)NbO3-LiSbO3 piezoceramic. Solid State Commun 141:675–679

    Google Scholar 

  26. Zhang S, Xia R, Shrout TR et al (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Google Scholar 

  27. Wu J, Wang Y, Xiao D et al (2007) Piezoelectric properties of LiSbO3-modified (K0.48Na0.5)NbO3 lead-free ceramics. Jpn J Appl Phys 46:7375–7377

    Google Scholar 

  28. Wu J, Xiao D, Wang Y et al (2007) Compositional dependence of phase structure and electrical properties in K0.42Na0.58NbO3-LiSbO3 lead-free ceramics. J appl Phys 102:114113

    Google Scholar 

  29. Li X, Jiang M, Liu J et al (2009) Phase transitions and electrical properties of (1-x)(K0.5Na0.5)NbO3-xBiScO3 lead-free piezoelectric ceramics with a CuO sintering aid. Phys Status Solidi A 206:2622–2626

    Google Scholar 

  30. Dai Y, Zhang X (2008) Phase transition behavior and electrical properties of lead-free (1-x)(0.98 K0.5Na0.5NbO3-0.02LiTaO3)-x(0.96Bi0.5Na0.5TiO3-0.04BaTiO3) piezoelectric ceramics. J Eur Ceram Soc 28:3193–3198

    Google Scholar 

  31. Kosec M, Bobnar V, Hrovat M et al (2004) New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J Mater Res 19:1849–1854

    Google Scholar 

  32. Li E, Suzuki R, Hoshina T et al (2009) Dielectric, piezoelectric, and electromechanical phenomena in K0.5Na0.5NbO3-LiNbO3-BiFeO3-SrTiO3 ceramics. Appl Phys Lett 94:132903

    Google Scholar 

  33. Kosec M, Kolar D (1975) On activated sintering and electrical properties of KNaNbO3. Mater Res Bull 10:335–340

    Google Scholar 

  34. Malic B, Bernard J, Holc J et al (2005) Alkaline-earth doping in (K, Na)NbO3 based piezoceramics. J Eur Ceram Sco 25:27072711

    Google Scholar 

  35. Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13:385–392

    Google Scholar 

  36. Hagh NM, Kerman K, Jadidian B (2009) Dielectric and piezoelectric properties of Cu2+-doped alkali Niobates. J Eur Ceram Soc 29:2325–2332

    Google Scholar 

  37. Li E, Kakemoto H, Wada S et al (2008) Enhancement of Qm by Co-doping of Li and Cu to potassium sodium niobate lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 55:980–987

    Google Scholar 

  38. Li E, Kakemoto H, Hoshina T et al (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702–7706

    Google Scholar 

  39. Takao H, Saito Y, Aoki Y et al (2006) Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 89:1951–1956

    Google Scholar 

  40. Hagh NM, Jadidian B, Ashbahian E et al (2008) Lead-free piezoelectric ceramic transducer in the donor-doped K0.5Na0.5NbO3 solid solution system. IEEE Trans Ultrason Ferroelectr Freq Control 55:214–224

    Google Scholar 

  41. Ji HN, Ok YP, Tai WP et al (2010) Preparation of lead-free (K, Na)NbO3-LiSbO3 ceramics with high piezoelectric constants by FeO doping. J Korean Phys Soc 56:1156–1159

    Google Scholar 

  42. Zhang S, Xai R, Shrout TR (2007) Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913

    Google Scholar 

  43. Zhang S, Xia R, Hao H et al (2008) Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl Phys Lett 92:152904

    Google Scholar 

  44. Park SH, Ahn CW, Nahm S et al (2004) Microstructure and piezoelectric properties of ZnO-added (Na0.5 K0.5)NbO3 Ceramics. Jpn J Appl Phys 43:L1072–L1074

    Google Scholar 

  45. Rubio-Marcos F, Romero JJ, Navarro-Rojero MG et al (2009) Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J Eur Ceram Soc 29:3045–3052

    Google Scholar 

  46. Malic B, Bernard J, Bencan A et al (2008) Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J Eur Ceram Soc 28:1191–1196

    Google Scholar 

  47. Matsubara M, Yamaguchi T, Kikuta K et al (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 44:258–263

    Google Scholar 

  48. Matsubara M, Yamaguchi T, Kikuta K et al (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43:7159–7163

    Google Scholar 

  49. Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. J Appl Phys 97:114105

    Google Scholar 

  50. Ryu J, Choi JJ, Hahn BD et al (2007) Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE Trans Ultrason Ferroelectr Freq Control 54:2510–2515

    Google Scholar 

  51. Lim JB, Zhang S, Jeon JH et al (2010) (K, Na)NbO3-based ceramics for piezoelectric hard lead-free materials. J Amer Ceram Soc 93:1218–1220

    Google Scholar 

  52. Matsubara M, Yamaguchi WT, Sakamoto W et al (2005) Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J Am Ceram Soc 88:1190–1196

    Google Scholar 

  53. Hagh NM, Jadidian B, Safari A (2007) Property-processing relationship in lead-free (K, Na, Li)NbO3-solid solution system. J Electroceram 18:339–346

    Google Scholar 

  54. Safari A, Abazari M, Kerman K et al (2009) (K0.44Na0.52Li0.04)(Nb0.84Ta0.10Sb0.06)O3 ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 56:1586–1594

    Google Scholar 

  55. Leel YH, Cho JH, Kim B et al (2008) Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0.5 Na0.5)NbO3 ceramics. Jpn J Appl Phys 47:4620–4622

    Google Scholar 

  56. Acker J, Kungl WH, Hoffmann MJ (2010) Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5)NbO3. J Am Ceram Soc 93:1270–1281

    Google Scholar 

  57. Haertling GH (1967) Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 50:329–330

    Google Scholar 

  58. Jaeger RE, Egerton L (1962) Hot-pressing of potassium sodium niobates. J Am Ceram Soc 45:209–213

    Google Scholar 

  59. Wang R, Xie R, Sekiya T et al (2004) Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater Res Bull 39:1709–1715

    Google Scholar 

  60. Wang R, Xie R, Sekiya T et al (2002) Piezoelectric properties of spark-plasma-sintered (Na0.5 K0.5)NbO3-PbTiO3 ceramics. Jpn J Appl Phys 41:7119–7122

    Google Scholar 

  61. Tani T, Kimura T (2006) Reactive-templated grain growth processing for lead free piezoelectric ceramics. Adv Appl Ceram 105:55–63

    Google Scholar 

  62. Saito Y, Takao H (2010) Synthesis of polycrystalline platelike NaNbO3 particles by the topochemical micro-crystal conversion from K4Nb6O17 and fabrication of grain-oriented (K0.5Na0.5)NbO3 ceramics. J Electroceram 24:39–45

    Google Scholar 

  63. Chang YF, Poterala SF, Yang ZP et al (2010) Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J Mater Res 25:687–694

    Google Scholar 

  64. Chen K, Xu G, Yang D et al (2007) Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3-0.05LiNbO3 crystals grown by the Bridgeman method. J Appl Phys 101:044103

    Google Scholar 

  65. Kizaki Y, Noguchi Y, Miyayama M (2006) Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl Phys Lett 89:142910

    Google Scholar 

  66. Lin D, Li Z, Zhang S et al (2010) Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J Am Ceram Soc 93:941–944

    Google Scholar 

  67. Ursic H, Bencan A, Skarabot M et al (2010) Dielectric, ferroelectric, piezoelectric, and electrostrictive properties of K0.5Na0.5NbO3 single crystals. J Appl Phys 107:033705

    Google Scholar 

  68. Bencan A, Tchernychova E, Godec M et al (2009) Compositional and structural study of a (K0.5Na0.5)NbO3 single crystal prepared by solid state crystal growth. Microsc Microanal 15:435–440

    Google Scholar 

  69. Lin D, Li Z, Zhang S et al (2009) Dielectric-piezoelectric properties and temperature dependence of domain structure evolution in lead free (K0.5Na0.5)NbO3 single crystal. Solid State Commun 149:1646–1649

    Google Scholar 

  70. Davis M, Klein N, Damjanovic D et al (2007) Large and stable thickness coupling coefficients of [001]C-oriented KNbO3 and Li-modified (K, Na)NbO3 single crystals. Appl Phys Lett 90:062904

    Google Scholar 

  71. Inagaki Y, Kakimoto K (2008) Dielectric and piezoelectric properties of Mn-doped Na0.5 K0.5NbO3 single crystals grown by flux method. Appl Phys Express 1:061602

    Google Scholar 

  72. Lin D, Li Z, Xu Z et al (2009) Characterization of KNN single crystals by slow-cooling technique. Ferroelectr 381:1–8

    Google Scholar 

  73. Noguchi Y, Miyayama M (2010) Effect of Mn doping on the leakage current and polarization properties in K0.14Na0.86NbO3 ferroelectric single crystals. J Ceramic Soc Jpn 118:711–716

    Google Scholar 

  74. Kimura H, Tanahashi R, Maiwa K et al (2009) Potassium-sodium-rubidium niobate single crystals and electric properties. Int J Mod Phys B 23:3631–3636

    Google Scholar 

  75. Fisher JG, Bencan ZA, Kosec M et al (2008) Growth of dense single crystals of potassium sodium niobate by a combination of solid-State crystal growth and hot pressing. J Am Ceram Soc 91:1503–1507

    Google Scholar 

  76. Fisher JG, Bencan A, Holc J et al (2007) Growth of potassium sodium niobate single crystals by solid state crystal growth. J Cryst Growth 303:487–492

    Google Scholar 

  77. Nakashima Y, Sakamoto W, Maiwa H et al (2007) Lead-free piezoelectric (K, Na)NbO3 thin films derived from metal alkoxide precursors. Jpn J Appl Phys 46:L311–L313

    Google Scholar 

  78. Anh CW, Lee SY, Lee HJ et al (2009) The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films. J Phys D Appl Phys 42:215304

    Google Scholar 

  79. Wang L, Yao K, Ren W (2008) Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition. Appl Phys Lett 93:092903

    Google Scholar 

  80. Lai F, Li JF (2007) Sol-Gel processing and characterization of (Na, K)NbO3 lead-free ferroelectric films. Ferroelectr 358:181–187

    Google Scholar 

  81. Schroeter C, Wessler B, Eng LM (2007) High throughput method for K0.5Na0.5NbO3 thin films preparation by chemical solution deposition. J Eur Ceram Soc 27:3785–3788

    Google Scholar 

  82. Nakashima Y, Sakamoto W, Shimura T et al (2007) Chemical processing and characterization of ferroelectric (K, Na)NbO3 thin films. Jpn J Appl Phys 46:6971–6975

    Google Scholar 

  83. Lai F, Li JF, Zhu ZX et al (2009) Influence of Li content on electrical properties of highly piezoelectric (Li, K, Na)NbO3 thin films prepared by sol-gel processing. J Appl Phys 106:064101

    Google Scholar 

  84. Ahn CW, Jeong ED, Lee SY et al (2008) Enhanced ferroelectric properties of LiNbO3 substituted Na0.5 K0.5NbO3 lead-free thin films grown by chemical solution deposition. Appl Phys Lett 93:212905

    Google Scholar 

  85. Tanaka K, Kakimoto K, Ohsato H (2006) Fabrication of highly oriented lead-free (Na, K)NbO3 thin films at low temperature by sol-gel process. J Cryst Growth 294:209–213

    Google Scholar 

  86. Lai F, Li JF (2007) Sol-gel processing of lead-free (Na, K)NbO3 ferroelectric films. J Sol-Gel Sci Technol 42:287–292

    Google Scholar 

  87. Lee H, Ahn CW, Kang SH et al (2006) The ferroelectric properties of (Na0.5 K0.5)NbO3 thin films fabricated by rf-magnetron sputtering. Ferroelectrics 335:227–232

    Google Scholar 

  88. Lee JS (2008) Preparation and evaluation of lead-free Na0.5 K0.5NbO3 ferroelectric thin films. J Korean Phys Soc 52:1109–1113

    Google Scholar 

  89. Kim JS, Lee HJ, Lee SY et al (2010) Frequency and temperature dependence of dielectric and electrical properties of radio-frequency sputtered lead-free K0.48Na0.52NbO3 thin films. Thin Solid Films 518:6390–6393

    Google Scholar 

  90. Lee HJ, Kim IW, Kim JS et al (2009) Ferroelectric and piezoelectric properties of Na0.52 K0.48NbO3 thin films prepared by radio frequency magnetron sputtering. Appl Phys Lett 94:092902

    Google Scholar 

  91. Wu J, Wang J (2009) Phase transitions and electrical behavior of lead-free (K0.50Na0.50)NbO3 thin film. J Appl Phys 106:066101

    Google Scholar 

  92. Shibata K, Oka F, Ohishi A et al (2008) Piezoelectric properties of (K, Na)NbO3 films deposited by RF magnetron sputtering. Appl Phys 1:011501

    Google Scholar 

  93. Blomqvist M, Khartsev S, Grishin A (2003) Optical waveguiding in magnetron-sputtered Na0.5 K0.5NbO3 thin films on sapphire substrates. Appl Phys Lett 82:439–441

    Google Scholar 

  94. Shibata K, Oka F, Nomoto A et al (2008) Crystalline structure of highly piezoelectric (K, Na)NbO3 films deposited by RF magnetron sputtering. Jpn J Appl Phys 47:8909–8913

    Google Scholar 

  95. Khartsev I, Grishin MA, Grishin AM (2005) Characterization of heteroepitaxial Na0.5 K0.5NbO3/La0.5Sr0.5CoO3 electro-optical cells. Appl Phys Lett 86:062901

    Google Scholar 

  96. Wang X, Helmersson U, Olafsson S et al (1998) Growth and field dependent dielectric properties of epitaxial Na0.5 K0.5NbO3 thin films. Appl Phys Lett 73:927–929

    Google Scholar 

  97. Shibata K, Suenaga K, Nomoto A et al (2009) Curie temperature, biaxial elastic modulus, and thermal expansion coefficient of (K, Na)NbO3 piezoelectric thin films. Jpn J Appl Phys 48:121408

    Google Scholar 

  98. Cho CR, Grishina A (1999) Self-assembling ferroelectric Na0.5 K0.5NbO3 thin films by pulsed-laser deposition. Appl Phys Lett 75:268–270

    Google Scholar 

  99. Cho CR, Koh JH, Grishin A (2000) Na0.5 K0.5NbO3/SiO2/Si thin film varactor. Appl Phys Lett 76:1761

    Google Scholar 

  100. Cho CR, Katardjiev I (2002) Na0.5 K0.5NbO3 thin films for voltage controlled acoustoelectric device applications. Appl Phys Lett 80:3171–3173

    Google Scholar 

  101. Saito T, Wada T, Adachi H et al (2004) Pulsed laser deposition of high-quality (K, Na)NbO3 thin films on SrTiO3 substrate using high-density ceramic targets. Jpn J Appl Phys 43:6627–6631

    Google Scholar 

  102. Saito T, Adachi H, Wada T (2005) Pulsed laser deposition of ferroelectric (Na0.5 K0.5)NbO3-based thin films. Jpn J Appl Phys 44:L573–L575

    Google Scholar 

  103. Abazari M, Akdogan EK, Safari A (2008) Effect of manganese doping on remnant polarization and leakage current in (K0.44, Na0.52, Li0.04)(Nb0.84, Ta0.10, Sb0.06)O3 epitaxial thin films on SrTiO3. Appl Phys Lett 92:212903

    Google Scholar 

  104. Abazari M, Safari A (2009) Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT-LS thin films on SrTiO3 substrate. J Appl Phys 105:094101

    Google Scholar 

  105. Abazari M, Akdogan EK, Safari A (2008) Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates. J Appl Phys 103:104106

    Google Scholar 

  106. Abazari M, Akdogan EK, Safari A (2008) Effects of background oxygen pressure on dielectric and ferroelectric properties of epitaxial (K0.44, Na0.52, Li0.04)(Nb0.84, Ta0.10, Sb0.06)O3 thin films on SrTiO3. Appl Phys Lett 93:192910

    Google Scholar 

  107. Abazari M, Choi T, Cheong SW et al (2010) Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films. J Phys D: Appl Phys 43:025405

    Google Scholar 

  108. Harada S, Muralt P (2009) Pulsed laser deposition of KNN-based ferroelectric thin films on platinised Si substrates. IOP Conf Ser: Mater Sci Eng 8:012004

    Google Scholar 

  109. Yamazoe S, Miyoshi Y, Komaki K et al (2009) Ferroelectric properties of (Na0.5 K0.5)NbO3-based thin films deposited on Pt/(001)MgO Substrate by pulsed laser deposition with NaNbO3 buffer layer. Jpn J Appl Phys 48:09KA13

    Google Scholar 

  110. Ryu J, Choi JJ, Hahn BD et al (2007) Fabrication and ferroelectric properties of highly dense lead-free piezoelectric K0.5Na0.5NbO3 thick films by aerosol deposition. Appl Phys Lett 90:152901

    Google Scholar 

  111. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  112. Ohring M (1992) The materials science of thin films. Academic, New York

    Google Scholar 

  113. Kao KCH (2004) Dielectric phenomena in solids. Elsevier Academic, London

    Google Scholar 

  114. Miao J, Xu XG, Jiang Y et al (2009) Ionized-oxygen vacancies related dielectric relaxation in heteroepitaxial K0.5Na0.5NbO3/La0.67Sr0.33MnO3 structure at elevated temperature. Appl Phys Lett 95:132905

    Google Scholar 

  115. Wang ZY, Chen TG (1998) Evidence for the weak domain wall pinning due to oxygen vacancies in SrBi2Ta2O9 from internal friction measurements. Phys Status Solidi A 167:R3–R4

    Google Scholar 

  116. Paladino AE (1965) Oxidation kinetics of single-crystal SrTiO3. J Am Ceram Soc 48:476–478

    Google Scholar 

  117. Morii K, Kawano H, Fujii I et al (1995) Dielectric relaxation in amorphous thin films of SrTiO3 at elevated temperatures. Appl Phys 78:1914–1919

    Google Scholar 

  118. Wang Y, Li Y, Kalantar-zadeh K et al (2008) Effect of Bi3+ ion on piezoelectric properties of KxNa1−xNbO3. J Electroceram 21:629–632

    Google Scholar 

  119. Jiang M, Liu X, Chen G et al (2009) Dielectric and piezoelectric properties of LiSbO3 doped 0.995 K0.5Na0.5NbO3-0.005BiFeO3 piezoelectric ceramics. Mater Lett 63:1262–1265

    Google Scholar 

  120. Ding A, Wang H (2010) Phase transitions and electrical properties of (Na0.5 K0.5)NbO3-Bi(Sc0.5Fe0.5)O3 lead-free piezoelectric ceramics. J Ceram Process Res 11:44–46

    Google Scholar 

  121. Lei C, Ye ZG (2008) Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appl Phys Lett 93:042901

    Google Scholar 

  122. Chang Y, Yang Z, Wei L et al (2006) Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3 ceramics. Mater Sci Eng A 437:301–305

    Google Scholar 

  123. Du H, Zhou W, Luo F et al (2008) Design and electrical properties’ investigation of K0.5Na0.5NbO3-BiMeO3 lead-free piezoelectric ceramics. J Appl Phys 104:034104

    Google Scholar 

  124. Watanabe Y, Sumidal K, Yamadal S et al (2008) Effect of Mn-doping on the piezoelectric properties of (K0.5Na0.5)(Nb0.67Ta0.33)O3 lead-free ceramicsm. Jpn J Appl Phys 47:3556–3558

    Google Scholar 

  125. Du H, Zhou W, Lou F et al (2008) Polymorphic phase transition dependence of piezoelectric properties in (0.5Na0.5)NbO3-(Bi0.5 K0.5)TiO3 lead-free ceramics. J Phys D: Appl Phys 41:115413

    Google Scholar 

  126. Mgbemere HE, Herber RP, Schneider GA (2009) Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. J Eur Ceram Soc 29:1729–1733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Safari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Safari, A., Hejazi, M. (2012). Lead-Free KNN-Based Piezoelectric Materials. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics