Skip to main content

Processing and Properties of Textured Bismuth Layer-Structured Ferroelectrics

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Bismuth layer-structured ferroelectrics (BLSFs) are one of the candidates for lead-free piezoelectrics for high temperature and high frequency applications. BLSFs have a layer structure with a general formula (Bi2O2)(A m−1B m O3m+1), where A denotes mono-, di-, or trivalent ions with a large ionic radius, and B denotes tetra-, penta-, or hexavalent ions with a small ionic radius, and m is an integer between 1 and 5. The crystal structure is composed of pseudo-perovskite blocks (A m−1B m O3m+1)2− interleaved with (Bi2O2)2+ layers along c-axis (pp. 226–229 in Jaffe et al. [8]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedoya C, Muller Ch, Jacob F, Gagou Y, Fremy M-A, Elkaim E (2002) Magnetic-field-induced orientation in Co-doped SrBi2Ta2O9 ferroelectric oxide. J Phys Condens Matter 14(45):11849–11857

    Article  Google Scholar 

  2. Chazono H, Kimura T, Yamaguchi T (1986) Fabrication of grain-oriented Bi4Ti3O12 ceramics by normal sintering (Part 2) sintering mechanisms. Yogyo Kyokai Shi 94(3):324–329

    Article  Google Scholar 

  3. Fuse K (2006) Mechanisms of texture development in Bi0.5(Na1-xKx)TiO3 made by reactive-templated grain growth. Master thesis, Keio University, Japan, March 2006

    Google Scholar 

  4. Horn JA, Zhang SC, Selvaraj U, Messing GL, Trolier-McKinstry S (1999) Templated grain growth of textured bismuth titanate. J Am Ceram Soc 82(4):921–926

    Article  Google Scholar 

  5. Howe JM (1997) Interfaces in materials. Wiley, New York

    Google Scholar 

  6. Igarashi H, Matsunaga K, Taniai T, Okazaki K (1978) Dielectric and piezoelectric properties of grain-oriented PbBi2Nb2O9 ceramics. Am Ceram Soc Bull 57(9):815–817

    Google Scholar 

  7. Ikegami S, Ueda I (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13:1572–1577

    Article  Google Scholar 

  8. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic, London

    Google Scholar 

  9. Kim HJ, Krane MJM, Trumble KP, Bowman KJ (2006) Analytical fluid flow models for tape casting. J Am Ceram Soc 89(9):2769–2775

    Google Scholar 

  10. Kimura T, Miyazaki C (2007) Effect of matrix particle size on texture development in SrBi4Ti4O15 made by templated grain growth. J Electroceramics 19(4):281–285

    Article  Google Scholar 

  11. Kimura T, Yamaguchi T (1982) Morphology of Bi2WO6 powders obtained in the presence of fused salt. J Mater Sci 17(7):1863–1870

    Article  Google Scholar 

  12. Kimura T, Yamaguchi T (1983) Fused salt synthesis of Bi4Ti3O12. Ceram Int 9(1):13–17

    Article  Google Scholar 

  13. Kimura T, Yamaguchi T (1987) Morphology control of electronic ceramic powders by molten salt synthesis. Adv Ceram 21:169–177

    Google Scholar 

  14. Kimura T, Yoshida Y (2006) Origin of texture development in barium bismuth titanate prepared by the templated grain growth method. J Am Ceram Soc 89(3):869–874

    Article  Google Scholar 

  15. Kimura T, Miyazaki C, Tsuzuki K, Fuse K, Motohashi T (2008) Effect of surface energy anisotropy on microstructure development of piezoelectric ceramics made by templated grain growth process. In: Proceedings of the 10th international conference of European ceramic society, Berlin, Germany, June 2007, pp 626–631

    Google Scholar 

  16. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  17. Lotgering K (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures – I. J Inorg Nucl Chem 9(2):113–123

    Article  Google Scholar 

  18. Mistler RE, Twiname ER (2000) Tape casting theory and practice. American Ceramic Society, Westerville

    Google Scholar 

  19. Noguchi Y, Suzuki N, Kitanaka Y, Teranishi S, Miyayama M (2008) Appl Phys Lett 93:032904

    Article  Google Scholar 

  20. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  21. Sakuma Y, Kimura T (2005) Effects of processing methods on texture development and densification in SrBi4Ti4O15 ceramics. J Mater Sci 40(18):4811–4817

    Article  Google Scholar 

  22. Sanson A, Whatmore RW (2005) Phase diagram of the Bi4Ti3O12-BaTiO3-(Na1/2Bi1/2)TiO3 system. J Am Ceram Soc 88(11):3147–3153

    Article  Google Scholar 

  23. Seabaugh MM, Kerscht IH, Messing GL (1997) Texture development by templated grain growth in liquid-phase-sintered α-alumina. J Am Ceram Soc 80(5):1181–1188

    Article  Google Scholar 

  24. Seabaugh MM, Vaudin MD, Cline JP, Messing GL (2000) Comparison of texture analysis techniques for highly oriented α-Al2O3. J Am Ceram Soc 83(8):2049–2054

    Article  Google Scholar 

  25. Suvaci E, Messing GL (2000) Critical factors in the templated grain growth of textured reaction-bonded alumina. J Am Ceram Soc 83(8):2041–2048

    Article  Google Scholar 

  26. Suzuki M, Miyayama M, Noguchi Y, Uchikoshi T (2008) Enhanced piezoelectric properties of grain-oriented Bi4Ti3O12-BaBi4Ti4O15 ceramics obtained by magnetic-field-assisted electrophoretic deposition method. J Appl Phys 104:014102

    Article  Google Scholar 

  27. Swartz S, Schulze WA, Biggers JV (1981) Fabrication and electrical properties of grain oriented Bi4Ti3O12 ceramics. Ferroelectrics 38(1–4):765–768

    Article  Google Scholar 

  28. Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19(1):31–39

    Article  Google Scholar 

  29. Takeuchi T, Tani T, Saito Y (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38(9B):5553–5556

    Article  Google Scholar 

  30. Takeuchi T, Tani T, Saito Y (2000) Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Jpn J Appl Phys 39(Part I, No. 9B):5577–5580

    Article  Google Scholar 

  31. Tamura K (2010) Preparation of textured CaBi4Ti4O15 with high piezoelectric performances. Master thesis, Keio University, Japan, March 2010

    Google Scholar 

  32. Tamura K, Kimura T (2009) The effect of the grain size on piezoelectric properties of textured CaBi4Ti4O15 ceramics. In: Presented at 11th international conference and exhibition of the European ceramic society, Krakow, 21–25 June 2009

    Google Scholar 

  33. Tani T, Kimura T (2006) Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure. Adv Appl Ceram 105(1):55–63

    Article  Google Scholar 

  34. Tsuzuki K (2009) Origin of texture development in Bi4Ti3O12 made by templated grain growth. Master thesis, Keio University, Japan, March 2009

    Google Scholar 

  35. Watanabe H, Kimura T, Yamaguchi T (1989) Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J Am Ceram Soc 72(2):289–293

    Article  Google Scholar 

  36. Watanabe H, Kimura T, Yamaguchi T (1991) Sintering of platelike bismuth titanate powder compacts with preferred orientation. J Am Ceram Soc 74(1):139–147

    Article  Google Scholar 

  37. Zeng J, Li Y, Yang Q, Jing X, Yin Q (2005) Grain orientation CaBi4Ti4O15 piezoceramics prepared by the screen-printing multilayer grain growth technique. J Eur Ceram Soc 25(12): 2727–2730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kimura, T., Tani, T. (2012). Processing and Properties of Textured Bismuth Layer-Structured Ferroelectrics. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics