Computer Programs

  • R.F. Egerton


The computer codes discussed in this appendix generate spectra, process spectral data, or calculate scattering cross sections or mean free paths. They are designed as a supplement to Digital Micrograph scripts (Mitchell and Schaffer, 2005) and can be downloaded from or from

All are written in MATLAB script. A program to convert DigitalMicrograph data files into MATLAB format is available. As these programs may be updated from time to time, the description that follows in this appendix may not be exact.


Free Path Inelastic Scattering Specimen Thickness Integration Window Slater Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander, D. T. L., Crozier, P. A., and Anderson, J. R. (2008) Brown carbon spheres in east Asian outflow and their optical properties. Science 321, 833–836.CrossRefGoogle Scholar
  2. Choi, B.-H., Merzbacher, E., and Khandelwal, G. S. (1973) Tables for Born approximation calculations of L-subshell ionization by simple heavy charged particles. At. Data 5, 291–304.CrossRefGoogle Scholar
  3. Egerton, R. F. (1979) K-shell ionization cross-sections for use in microanalysis. Ultramicroscopy 4, 169–179.CrossRefGoogle Scholar
  4. Egerton, R. F. (1993) Oscillator-strength parameterization of inner-shell cross sections. Ultramicroscopy 50, 13–28.CrossRefGoogle Scholar
  5. Egerton, R. F., and Malac, M. (2002) Improved background-fitting algorithms for ionization edges in electron energy-loss spectra. Ultramicroscopy 92, 47–56.CrossRefGoogle Scholar
  6. Egerton, R. F., Wang, F., Malac, M., Moreno, M. S., and Hofer, F. (2008) Fourier-ratio deconvolution and its Bayesian equivalent. Micron 39, 642–647.CrossRefGoogle Scholar
  7. Egerton, R. F., McLeod, R., Wang, F., and Malac, M. (2010) Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991–997.CrossRefGoogle Scholar
  8. Erni, R., and Browning, N. D. (2008) The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy 108, 84–99.CrossRefGoogle Scholar
  9. Inokuti, M., Dehmer, J. L., Baer, T., and Hanson, D. D. (1981) Oscillator-strength moments, stopping powers, and total inelastic-scattering cross sections of all atoms through strontium. Phys. Rev. A 23, 95–109.CrossRefGoogle Scholar
  10. Jin, Q., and Li, D. (2006) Determining inelastic mean free path by electron energy loss spectrocopy. Microsc. Microanal. 12 (Suppl. 2), 1186–1187.CrossRefGoogle Scholar
  11. King, W. E., Benedek, R., Merkle, K. L., and Meshii, M. (1987) Damage effects of high energy electrons on metals. Ultramicroscopy 23, 345–354.CrossRefGoogle Scholar
  12. Lenz, F. (1954) Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. 9A, 185–204.Google Scholar
  13. Malis, T., Cheng, S. C., and Egerton, R. F. (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200.CrossRefGoogle Scholar
  14. Scofield, J. H. (1978) K- and L-shell ionization of atoms by relativistic electrons. Phys. Rev. A 18, 963–970.CrossRefGoogle Scholar
  15. Slater, J. C. (1930) Atomic shielding constants. Phys. Rev. 36, 57–64.CrossRefGoogle Scholar
  16. Spence, J. C. H. (1979) Uniqueness and the inversion problem of incoherent multiple scattering. Ultramicroscopy 4, 9–12.CrossRefGoogle Scholar
  17. Wong, K., and Egerton, R. F. (1995) Correction for the effects of elastic scattering in core-loss quantification. J. Microsc. 178, 198–207.Google Scholar
  18. Zener, C. (1930) Analytic atomic wave functions. Phys. Rev. 36, 51–56.CrossRefGoogle Scholar
  19. Scheinfein, M., and Isaacson, M. (1984) Design and performance of second order aberration corrected spectrometers for use with the scannering transmission electron microscope. In Scanning Electron Microscopy, SEM Inc., A. M. F. O’Hare, IL, Part 4, pp. 1681–1696.Google Scholar
  20. Wilhelm, P., and Hofer, F. (1992) EELS-microanalysis of the elements Ca to Cu using M23-edges. In Electron Microscopy, Proc. EUREM 92, Granada, Spain, Vol. 1, pp. 281–282.Google Scholar
  21. Mitchell, D. R. G., and Schaffer, B. (2005) Scripting customised microscopy tools for digital micrograph. Ultramicroscopy 103, 319–546.CrossRefGoogle Scholar
  22. Johnson, D. W. (1975) A Fourier method for numerical Kramers-Kronig analysis. J. Phys. A (Math. Gen. Phys.) 8, 490–495.CrossRefGoogle Scholar
  23. Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., and Furuya, K. (2008a) Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 71, 626–631.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics, Avadh Bhatia Physics LaboratoryUniversity of AlbertaEdmontonCanada

Personalised recommendations