Skip to main content

Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems

  • Chapter
  • First Online:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

In Euclidean spaces, the geometric notions of nearest-points map, farthest-points map, Chebyshev set, Klee set, and Chebyshev center are well known and well understood. Since early works going back to the 1930s, tremendous theoretical progress has been made, mostly by extending classical results from Euclidean space to Banach space settings. In all these results, the distance between points is induced by some underlying norm. Recently, these notions have been revisited from a different viewpoint in which the discrepancy between points is measured by Bregman distances induced by Legendre functions. The associated framework covers the well-known Kullback–Leibler divergence and the Itakura–Saito distance. In this survey, we review known results and we present new results on Klee sets and Chebyshev centers with respect to Bregman distances. Examples are provided and connections to recent work on Chebyshev functions are made. We also identify several intriguing open problems.

AMS 2010 Subject Classification: Primary 41A65; Secondary 28D05, 41A50, 46N10, 47N10, 49J53, 54E52, 58C06, 90C25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asplund, E.: Sets with unique farthest points. Israel J. Math. 5, 201–209 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: Joint and separate convexity of the Bregman distance. In: D. Butnariu, Y. Censor, S. Reich (ed.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (Haifa 2000), pp. 23–36. Elsevier (2001)

    Google Scholar 

  4. Bauschke, H.H., Noll, D.: The method of forward projections. J. Nonlin. Convex Anal. 3, 191–205 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M, Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Google Scholar 

  6. Bauschke, H.H., Wang, X., Ye, J., Yuan, X.: Bregman distances and Chebyshev sets. J. Approx. Theory 159, 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Wang, X., Ye, J., Yuan, X.: Bregman distances and Klee sets. J. Approx. Theory 158, 170–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Macklem, M.S., Sewell, J.B., Wang, X.: Klee sets and Chebyshev centers for the right Bregman distance. J. Approx. Theory 162, 1225–1244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berens, H., Westphal, U.: Kodissipative metrische Projektionen in normierten linearen Räumen. In: P. L. Butzer and B. Sz.-Nagy (eds.) Linear Spaces and Approximation, vol. 40, pp. 119–130, Birkhäuser (1980)

    Google Scholar 

  10. Borwein, J.M.: Proximity and Chebyshev sets. Optim. Lett. 1, 21–32 (2007)

    MATH  Google Scholar 

  11. Borwein, J.M, Lewis, A.S.: Convex Analysis and Nonlinear Optimization, 2nd edn. Springer (2006)

    Google Scholar 

  12. Borwein, J.M., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press (2010)

    MATH  Google Scholar 

  13. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comp. Math. Math 7, 200–217 (1967)

    Google Scholar 

  14. Bunt, L.N.H.: Bijdrage tot de theorie de convexe puntverzamelingen. Thesis, Univ. of Groningen, Amsterdam, 1934

    Google Scholar 

  15. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation in Infinite Dimensional Optimization. Kluwer, Dordrecht (2000)

    Google Scholar 

  16. Censor, Y., Zenios, S.A.: Parallel Optimization. Oxford University Press (1997)

    Google Scholar 

  17. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer (2001)

    Google Scholar 

  18. Fremlin, D.H.: Measure Theory, vol. 2. Broad Foundations, 2nd edn. Torres Fremlin, Colchester (2010)

    Google Scholar 

  19. Garkavi, A.L.: On the Čebyšev center and convex hull of a set. Usp. Mat. Nauk 19, 139–145 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press (1990)

    Google Scholar 

  21. De Guzmán, M.: A change-of-variables formula without continuity. Am. Math. Mon. 87, 736–739 (1980)

    Article  MATH  Google Scholar 

  22. Hiriart-Urruty, J.-B.: Ensembles de Tchebychev vs. ensembles convexes: l’etat de la situation vu via l’analyse convexe non lisse. Ann. Sci. Math. Québec 22, 47–62 (1998)

    Google Scholar 

  23. Hiriart-Urruty, J.-B.: La conjecture des points les plus éloignés revisitée. Ann. Sci. Math. Québec 29, 197–214 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Hiriart-Urruty, J.-B.: Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 49, 255–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. Springer (1996)

    Google Scholar 

  26. Klee, V.: Circumspheres and inner products. Math. Scand. 8, 363–370 (1960)

    MathSciNet  Google Scholar 

  27. Klee, V.: Convexity of Chebyshev sets. Math. Ann. 142, 292–304 (1960/1961)

    Google Scholar 

  28. Motzkin, T.: Sur quelques propriétés caractéristiques des ensembles convexes. Atti. Accad. Naz. Lincei, Rend., VI. Ser. 21, 562–567 (1935)

    Google Scholar 

  29. Motzkin, T.S., Straus, E.G., Valentine, F.A.: The number of farthest points. Pac. J. Math. 3, 221–232 (1953)

    MathSciNet  MATH  Google Scholar 

  30. Nielsen, F., Nock, R.: On the smallest enclosing information disk. Inform. Process. Lett. 105, 93–97 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. In: J. Gama, R. Camacho, P. Brazdil, A. Jorge and L. Torgo (eds.) Machine Learning: 16th European Conference on Machine Learning (Porto 2005), pp. 649–656, Springer Lecture Notes in Computer Science vol. 3720 (2005)

    Google Scholar 

  32. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R. J.-B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  35. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer (1970)

    Google Scholar 

  36. Singer, I.: The Theory of Best Approximation and Functional Analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 13. Society for Industrial and Applied Mathematics (1974)

    Google Scholar 

  37. Vlasov, L.P.: Approximate properties of sets in normed linear spaces. Russian Math. Surv. 28, 1–66 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.: On Chebyshev functions and Klee functions. J. Math. Anal. Appl. 368, 293–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Westphal, U., Schwartz, T.: Farthest points and monotone operators. B. Aust. Math. Soc. 58, 75–92 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing (2002)

    Google Scholar 

Download references

Acknowledgements

The authors thank two referees for their careful reading and pertinent comments. Heinz Bauschke was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program. Xianfu Wang was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bauschke, H.H., Macklem, M.S., Wang, X. (2011). Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_1

Download citation

Publish with us

Policies and ethics