Advertisement

Introduction

  • Shuming Wang
  • Junzo Watada
Chapter

Abstract

Randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world. Randomness relates to the stochastic variability of all possible outcomes of a situation and can be perfectly and mathematically described by probability theory with random variable. Fuzziness, on the other hand, stems from the imprecision of subjective human knowledge and exists objectively with a variety of manifestations in numbers of situations such as data capture and process, blurred boundaries of the parameters, expertise applications, and lack of precise knowledge. Fuzzy variable in the context of theory of fuzzy set and possibility (see [114, 117, 118, 171, 172]) is widely accepted as an effective mathematical approach to model the fuzzy uncertainty.

References

  1. 1.
    P.T. Agraz, On Borel measurability and large deviations for fuzzy random variables, Fuzzy Sets and Systems, vol. 157, no. 19, pp. 2558–2568, 2006.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    E.E. Ammar, On fuzzy random multiobjective quadratic programming, European Journal of Operational Research, vol. 193, no. 2, pp. 329–341, 2009.MathSciNetMATHCrossRefGoogle Scholar
  3. 4.
    G. Aletti, E.G. Bongiorno and V. Capasso, Statistical aspects of fuzzy monotone set-valued stochastic processes, Application to birth-and-growth processes Fuzzy Sets and Systems, vol. 160, no. 21, pp. 3140–3151, 2009.MathSciNetMATHGoogle Scholar
  4. 6.
    S. Bag, D. Chakraborty and A.R. Roy, A production inventory model with fuzzy random demand and with flexibility and reliability considerations, Computers & Industrial Engineering, vol. 56, no. 1, pp. 411–416, 2009.CrossRefGoogle Scholar
  5. 10.
    U. Bhattacharya, J.R. Rao, and R.N. Tiwari, Fuzzy multi-criteria facility location problem, Fuzzy Sets and Systems, vol. 51, no. 3, pp. 277–287, 1992.MathSciNetMATHCrossRefGoogle Scholar
  6. 12.
    R.P. Bigelow, Computers and the Law: An Introductory Handbook, Commerce Clearing House, New York, 3rd Edition, 1981.Google Scholar
  7. 13.
    J.R. Birge and F.V. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York, 1997.MATHGoogle Scholar
  8. 16.
    I. Bongartz, P.H. Calamai, and A.R. Conn, A projection method for lp norm location-allocation problems, Mathematical Programming, vol. 66, nos. 1-3, pp. 283–312, 1994.MathSciNetCrossRefGoogle Scholar
  9. 17.
    Y.-H.O. Chang, Hybrid fuzzy least-squares regression analysis and its reliability measures, Fuzzy Sets and Systems, vol. 119, no. 2, pp. 225–246, 2001.MathSciNetMATHCrossRefGoogle Scholar
  10. 24.
    H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1966.Google Scholar
  11. 32.
    L. Dupont, Branch and bound algorithm for a facility location problem with concave site dependent costs, International Journal of Production Economics, vol. 112, no. 1, pp. 245–254, 2008.MathSciNetCrossRefGoogle Scholar
  12. 35.
    A.T. Ernst and M. Krishnamoorthy, Solution algorithms for the capacitated single allocation hub location problem, Annals of Operations Research, vol. 86, no. 1-4, pp. 141–159, 1999.MathSciNetMATHCrossRefGoogle Scholar
  13. 37.
    G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag, New York, 1996.MATHGoogle Scholar
  14. 38.
    J.M. Garibaldi and T. Ozen, Uncertain fuzzy reasoning: A case study in modelling expert decision making, IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 16–30, 2007.CrossRefGoogle Scholar
  15. 39.
    M.A. Gil, L.D. Miguel and D.A. Ralescu, Overview on the development of fuzzy random variables, Fuzzy sets and systems, vol. 157, no. 19, pp. 2546–2557, 2006.MathSciNetMATHCrossRefGoogle Scholar
  16. 40.
    D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.MATHGoogle Scholar
  17. 41.
    F. Glover, Tabu search-Part I, ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.MATHCrossRefGoogle Scholar
  18. 42.
    F. Glover, Tabu search-Part II, ORSA Journal on Computing, vol. 2, no. 1, pp. 4–32, 1990.MATHCrossRefGoogle Scholar
  19. 45.
    F.F. Hao and Y.K. Liu, Mean-variance models for portfolio selection with fuzzy random returns, Journal of Applied Mathematics and Computing, vol. 30, nos. 1-2, pp. 9–38, 2009.MathSciNetCrossRefGoogle Scholar
  20. 47.
    S.L. Ho and S. Yang, A computationally efficient vector optimizer using ant colony optimizations algorithm for multiobjective designs, IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1034–1037, 2008.CrossRefGoogle Scholar
  21. 50.
    D.H. Hong and P.I. Ro, The law of large numbers for fuzzy numbers with unbounded supports, Fuzzy Sets and Systems, vol. 116, no. 2, pp. 269–274, 2000.MathSciNetMATHCrossRefGoogle Scholar
  22. 52.
    T. Huang, R. Zhao and W. Tang, Risk model with fuzzy random individual claim amount, European Journal of Operational Research, vol. 192, no. 3, pp. 879–890, 2009.MathSciNetMATHCrossRefGoogle Scholar
  23. 53.
    H. Huang, C.-G. Wu and Z.-F. Hao, A pheromone-rate-based analysis on the convergence time of ACO algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 4, pp. 910–923, 2009.CrossRefGoogle Scholar
  24. 54.
    C.-M. Hwang and J.-S. Yao, Independent fuzzy random variables and their application, Fuzzy Sets and Systems, vol. 82, no. 3, pp. 335–350, 1996.MathSciNetMATHCrossRefGoogle Scholar
  25. 58.
    H. Ishii, Y.L. Lee, and K.Y. Yeh, Fuzzy facility location problem with preference of candidate sites, Fuzzy Sets and Systems, vol. 158, no. 17, pp. 1922–1930, 2007.MathSciNetMATHCrossRefGoogle Scholar
  26. 60.
    S. Janson, D. Merkle and M. Middendorf, Molecular docking with multi-objective particle swarm optimization, Applied Soft Computing, vol. 8, no. 1, pp. 666–675, 2008.MathSciNetCrossRefGoogle Scholar
  27. 63.
    P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, McGraw-Hill, New York, 2000.Google Scholar
  28. 64.
    P. Kall and S.W. Wallace, Stochastic Programming, John Wiley & Sons, Chichester, 1994.MATHGoogle Scholar
  29. 67.
    J. Kennedy and R.C. Eberhart, A discrete binary version of the particle swarm algorithm, In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, pp. 4104–4108, 1997.Google Scholar
  30. 68.
    J. Kennedy, R.C. Eberhart and Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.Google Scholar
  31. 69.
    I. Khindanova, S. Rachev and E. Schwartz, Stable modeling of value at risk, Mathematical and Computer Modelling, vol. 34, nos. 9-11, pp. 1223–1259, 2001.MathSciNetCrossRefGoogle Scholar
  32. 72.
    V. Krätschmer, Limit theorems for fuzzy-random variables, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 253–263, 2002.MathSciNetMATHCrossRefGoogle Scholar
  33. 73.
    R. Kruse and K.D. Meyer, Statistics with Vague Data, D. Reidel Publishing Company, Dordrecht, 1987.MATHCrossRefGoogle Scholar
  34. 78.
    K. J. Laidler, The World of Physical Chemistry, Oxford University Press, Oxford, 1993.Google Scholar
  35. 79.
    H.K. Lam and M. Narimani, Stability analysis and performance design for fuzzy-model-based control system under imperfect premise Matching, IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 949–961, 2009.CrossRefGoogle Scholar
  36. 80.
    G. Laporte, F.V. Louveaux and L.V. Hamme, Exact solution to a location problem with stochastic demands, Transportation Science, vol. 28, no. 2, pp. 95–103, 1994.MATHCrossRefGoogle Scholar
  37. 81.
    S. Lee, S. Soak, S. Oh, W. Pedrycz and M. Jeon, Modified binary particle swarm optimization, Progress in Natural Science, vol. 18, no. 9, pp. 1161–1166, 2008.MathSciNetCrossRefGoogle Scholar
  38. 82.
    S. Li and L. Guan, Fuzzy set-valued Gaussian processes and Brownian motions, Information Sciences, vol 177, no. 16, pp. 3251–3259, 2007.MathSciNetMATHCrossRefGoogle Scholar
  39. 84.
    S. Li, R. Zhao and W. Tang, Fuzzy random delayed renewal process and fuzzy random equilibrium renewal process, Journal of Intelligent & Fuzzy Systems, vol. 18, no. 2, pp. 149–156, 2007.MATHGoogle Scholar
  40. 85.
    B. Li, M. Zhu and K. Xu, A practical engineering method for fuzzy reliability analysis of mechanical structures, Reliability Engineering & System Safety, vol. 67, no. 3, pp. 311–315, 2000.CrossRefGoogle Scholar
  41. 87.
    F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Information Sciences, vol. 178, no. 9, pp. 2224–2236, 2008.MathSciNetCrossRefGoogle Scholar
  42. 88.
    B. Liu, Fuzzy random chance-constrained programming, IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 713–720, 2001.CrossRefGoogle Scholar
  43. 89.
    B. Liu, Fuzzy random dependent-chance programming, IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 721–726, 2001.CrossRefGoogle Scholar
  44. 90.
    B. Liu, Theory and Practice of Uncertain Programming, Physica-Verlag, Heidelberg, 2002.MATHGoogle Scholar
  45. 91.
    B. Liu, A survey of credibility theory, Fuzzy Optimization and Decision Making, vol.5, no.4, pp.387–408, 2006.MathSciNetCrossRefGoogle Scholar
  46. 93.
    B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transaction on Fuzzy Systems, vol. 10, no. 4, pp. 445–450, 2002.CrossRefGoogle Scholar
  47. 94.
    Y.K. Liu and B. Liu, Fuzzy random variable: A scalar expected value operator, Fuzzy Optimization and Decision Making, vol. 2. no. 2, pp. 143–160, 2003.MathSciNetCrossRefGoogle Scholar
  48. 95.
    Y.K. Liu and B. Liu, A class of fuzzy random optimization: expected value models, Information Sciences, vol. 155, nos. 1-2, pp. 89–102, 2003.CrossRefGoogle Scholar
  49. 96.
    Y.K. Liu and B. Liu, On minimum-risk problems in fuzzy random decision systems, Computers & Operations Research, vol. 32, no. 2, pp. 257–283, 2005.MathSciNetMATHCrossRefGoogle Scholar
  50. 98.
    Y. K. Liu and S. Wang, A credibility approach to the measurability of fuzzy random vectors, International Journal of Natural Sciences & Technology, vol. 1, no. 1, pp. 111–118, 2006.Google Scholar
  51. 101.
    Y.K. Liu, The approximation method for two-stage fuzzy random programming with recourse, IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1197–1208, 2007.CrossRefGoogle Scholar
  52. 103.
    Y.-C. Liu, P.-Y. Hsu, G.-J. Sheen, S. Ku and K.-W. Chang, Simultaneous determination of view selection and update policy with stochastic query and response time constraints, Information Sciences, vol. 178, no. 18, pp. 3491–3509, 2008.MathSciNetCrossRefGoogle Scholar
  53. 105.
    F.V. Louveaux and D. Peeters, A dual-based procedure for stochastic facility location, Operations Research, vol. 40, no. 3, pp. 564–573, 1992.MathSciNetMATHCrossRefGoogle Scholar
  54. 106.
    M. López-Diaz and M. A. Gil, Constructive definitions of fuzzy random variables, Statistics and Probability Letters, vol. 36, no. 2, pp. 135–143, 1997.MathSciNetMATHCrossRefGoogle Scholar
  55. 109.
    M.K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Sets and Systems, vol. 77, no. 3, pp. 291–297, 1996.MathSciNetMATHCrossRefGoogle Scholar
  56. 113.
    D. Merkle, M. Middendorf and H. Schmeck, Ant colony optimization for resourceconstrained project scheduling, IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 333–346, 2002.CrossRefGoogle Scholar
  57. 114.
    J.M. Mendel, Advances in type-2 fuzzy sets and systems, Information Sciences, vol. 177, no. 1, pp. 84–110, 2007.MathSciNetMATHCrossRefGoogle Scholar
  58. 115.
    Z. Michalewicz, Genetic Algorithms + Data Stractures = Evolution Programs, Springer, New York, 1994.Google Scholar
  59. 116.
    B.M. Mohan and A. Sinha, Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets, ISA Transactions, vol. 47, no. 3, pp. 300–310, 2008.CrossRefGoogle Scholar
  60. 117.
    A.W. Mohemmed, N.C. Sahoo and T. K. Geok, Solving shortest path problem using particle swarm optimization, Applied Soft Computing, vol. 8, no. 4, pp. 1643–1653, 2008.CrossRefGoogle Scholar
  61. 118.
    A. Mukherjea, and K. Pothoven, Real and Functional Analysis, Plenum Press, New York, 1984.MATHGoogle Scholar
  62. 120.
    S. Nahmias, Fuzzy variable, Fuzzy Sets and Systems, vol. 1, no. 2, pp. 97–101, 1978.MathSciNetMATHCrossRefGoogle Scholar
  63. 121.
    W. Nather, Regression with fuzzy random data, Computational Statistics & Data Analysis, vol. 51, no. 1, pp. 235–252, 2006.MathSciNetCrossRefGoogle Scholar
  64. 123.
    H.T. Nguyen and B. Wu, Foundations of Statistics with Fuzzy Data, Springer, New York, 2006.Google Scholar
  65. 124.
    W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets; Analysis and Design, MIT Press, Cambridge, MA, 1998.MATHGoogle Scholar
  66. 131.
    V.R. Prasad and M. Raghavachari, Optimal allocation of interchangeable components in a series-parallel system, IEEE Transactions on Reliability, vol. 47, no. 3, pp. 255–260, 1998.CrossRefGoogle Scholar
  67. 132.
    Z. Qiao, Y. Zhang and G. Wang, Fuzzy random variable–valued exponential function, logarithmic function and power function, Fuzzy Sets and Systems, vol. 99, no. 3, pp. 311–324, 1998.MathSciNetMATHCrossRefGoogle Scholar
  68. 133.
    R. Qin and Y.K. Liu, A new data envelopment analysis model with fuzzy random inputs and outputs, Journal of Applied Mathematics & Computing, in press (DOI: 10.1007/s12190-009-0289-7).Google Scholar
  69. 134.
    H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory, Harvard University, Boston, MA, 1961.Google Scholar
  70. 142.
    M. Setnes, Supervised fuzzy clustering for rule extraction, Fuzzy Systems, IEEE Transactions, vol. 8, no. 4, pp. 416–424, 2000.CrossRefGoogle Scholar
  71. 143.
    A.F. Shapiro, Fuzzy random variables, Insurance: Mathematics and Economics, vol. 44, no. 2, pp. 307–314, 2009.MathSciNetMATHCrossRefGoogle Scholar
  72. 146.
    W.E. Stein and K. Talati, Convex fuzzy random variables, Fuzzy Sets and Systems, vol. 6, no. 3, pp. 271–283, 1981.MathSciNetMATHCrossRefGoogle Scholar
  73. 147.
    T. Stützle and H.H. Hoos, \(\mathcal{M}\mathcal{A}\mathcal{X}-\mathcal{M}\mathcal{I}\mathcal{N}\) Ant System, Future Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.CrossRefGoogle Scholar
  74. 148.
    K. Tanaka, T. Kosaki and H.O. Wang, Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and LMI-based design, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 28, no. 3, pp. 329–337, 1998.CrossRefGoogle Scholar
  75. 149.
    M.F. Tasetiren and Y. C. Liang, A binary particle swarm optimization algorithm for lot sizing problem, Journal of Economic and Social Research, vol. 5, no. 2, pp. 1–20, 2003.Google Scholar
  76. 150.
    R. Tavakkoli-Moghaddam, J. Safari and F. Sassani, Reliability optimization of series-parallel system with a choice of redundancy strategies using a genetic algorithm, Reliability Engineering & System Safety, vol. 93, no. 4, pp. 550–556, 2008.CrossRefGoogle Scholar
  77. 151.
    P. Terán, Probabilistic foundations for measurement modelling using fuzzy random variables, Fuzzy Sets and Systems, vol. 158, no. 9, pp. 973–986, 2007.MathSciNetMATHCrossRefGoogle Scholar
  78. 153.
    J.V. Tiel, Convex Analysis: An Introductory Text, John Wiley & Sons, 1984.Google Scholar
  79. 154.
    T.L. Urban, Inventory models with inventory-level-dependent demand: A comprehensive review and unifying theory, European Journal of Operational Research, vol. 162, no. 3, pp. 792–804, 2005.MATHCrossRefGoogle Scholar
  80. 155.
    M.K. Urbanski and J. Wasowski, Fuzzy approach to the theory of measurement inexactness, Measurement, vol. 34, no. 1, pp. 67–74, 2003.CrossRefGoogle Scholar
  81. 156.
    R. Viertl, On reliability estimation based on fuzzy lifetime data, Journal of Statistical Planning and Inference, vol. 139, no. 5, pp. 1750–1755, 2009.MathSciNetMATHCrossRefGoogle Scholar
  82. 158.
    B. Wang, S. Wang and J. Watada, Real options analysis based on fuzzy random variables, International Journal of Innovative Computing, Information & Control, vol.6, no.4, pp.1689–1698, 2010.MathSciNetGoogle Scholar
  83. 159.
    B. Wang, S. Wang and J. Watada, Fuzzy portfolio selection models with Value-at-Risk, IEEE Transactions on Fuzzy Systems, to appearGoogle Scholar
  84. 160.
    S. Wang, Y. Liu and X. Dai, On the continuity and absolute continuity of credibility functions, Journal of Uncertain Systems, vol.1, no.3, pp.185–200, 2007.MATHGoogle Scholar
  85. 161.
    S. Wang and J. Watada, T-independence condition for fuzzy random vector based on continuous triangular norms, Journal of Uncertain Systems, vol. 2, no. 2, pp. 155–160, 2008.Google Scholar
  86. 164.
    S. Wang and J. Watada, Modelling redundancy allocation for a fuzzy random parallel-series system, Journal of Computational & Applied Mathematics, vol. 232, no. 2, pp. 539–557, 2009.MATHCrossRefGoogle Scholar
  87. 165.
    S. Wang and J. Watada, Fuzzy random renewal reward process and its applications, Information Sciences, vol. 179, no. 23, pp. 4057–4069, 2009.MathSciNetMATHCrossRefGoogle Scholar
  88. 166.
    S. Wang and J. Watada, Reliability optimization of a series-parallel system with fuzzy random lifetimes, International Journal of Innovative Computing, Information & Control, vol.5, no.6, pp.1547–1558, 2009.Google Scholar
  89. 169.
    S. Wang, J. Watada and W. Pedrycz, Recourse-based facility location problems in hybrid uncertain environment, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no. 4, pp. 1176–1187, 2010.CrossRefGoogle Scholar
  90. 171.
    S. Wang and J. Watada, Two-stage fuzzy stochastic programming with Value-at-Risk criteria, Applied Soft Computing, vol. 11, no. 1, pp. 1044–1056, 2011.CrossRefGoogle Scholar
  91. 172.
    S. Wang and J. Watada, Some properties of T-independent fuzzy variables, Mathematical & Computer Modelling, vol.53, nos.5-6, pp.970–984, 2011.MathSciNetGoogle Scholar
  92. 173.
    S. Wang and J. Watada, A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty, Information Sciences, to appear, doi:10.1016/j.ins.2010.02.014.Google Scholar
  93. 174.
    J. Watada and W. Pedrycz, A fuzzy regression approach to acquisition of linguistic rules, Handbook on Granular Computation, In: W. Pedrycz, A. Skowron, V. Kreinovich (eds), Chapter 32, John Wiley & Sons Ltd, pp. 719–740, 2008.Google Scholar
  94. 175.
    J. Watada and S. Wang, Regression model based on fuzzy random variables, Seising Rodulf (Ed.), Chapter 26, Views on Fuzzy Sets and Systems from Different Perspectives, Spring-Verlag, Berlin, 2009.Google Scholar
  95. 176.
    J. Watada, S. Wang and W. Pedrycz, Building confidence-interval-based fuzzy random regression models, IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1273–1283, 2009.CrossRefGoogle Scholar
  96. 177.
    P. Wang, Fuzzy contactability and fuzzy variables, Fuzzy Sets and Systems, vol. 8, no. 1, pp.81–92, 1982.MathSciNetMATHCrossRefGoogle Scholar
  97. 180.
    H.-C. Wu, The central limit theorems for fuzzy random variables, Information Sciences, vol. 120, nos. 1-4, pp. 239–256, 1999.CrossRefGoogle Scholar
  98. 181.
    J. Xu and Y.G. Liu, Multi-objective decision making model under fuzzy random environment and its application to inventory problems, Information Sciences, vol. 178, no. 15, pp. 2899–2914, 2008.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Shuming Wang
    • 1
  • Junzo Watada
    • 1
  1. 1.Waseda UniversityKitakyushu-City 2-7Japan

Personalised recommendations