Role of Kainate Receptors in Network Activity during Development

  • Sari E. LauriEmail author
  • Tomi Taira
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 717)


Distinct populations of kainate-type ionotropic glutamate receptors (KARs), located at various cell types and subcellular compartments and utilizing diverse downstream signaling mechanisms, represent an intricate system with large capacity for modulatory effects ranging from synapse-specific changes to alterations in the excitability of large neuronal ensembles. However, the way the diverse functions ascribed for KARs are utilized under different physiological and pathological conditions to regulate activity at the level of neuronal networks is still largely unclear. Here, we address the data regarding functions of KARs in the regulation of network activity in the hippocampus, with a main focus on their roles during early postnatal development. We further discuss the evidence suggesting that KAR mediated signaling during the immature type network activity is involved in the formation and maturation of glutamatergic synapses.


Network Activity Kainate Receptor Glutamatergic Synapse Early Postnatal Development Network Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feller MB. Spontaneous correlated activity in developing neural circuits. Neuron 1999; 22:653–656.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang LI, Poo MM. Electrical activity and development of neural circuits. Nat Neurosci 2001;(4 Suppl) 1207–1214.Google Scholar
  3. 3.
    Ben Ari Y. Excitatory actions of GABA during development: The nature of the nurture. Nat Rev Neurosci 2002; 3:728–739.PubMedCrossRefGoogle Scholar
  4. 4.
    Verhage M, Maia AS, Plomp JJ et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000; 287:864–869.PubMedCrossRefGoogle Scholar
  5. 5.
    Lauri SE, Lamsa K, Pavlov I et al. Activity blockade increases the number of functional synapses in the hippocampus of newborn rats. Mol Cell Neurosci 2003; 22:107–117.PubMedCrossRefGoogle Scholar
  6. 6.
    Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004; 7(4):327–332.PubMedCrossRefGoogle Scholar
  7. 7.
    Colin-LeBrun I, Ferrand N, Caillard O et al. Spontaneous synaptic activity is required for formation of functional GABAergic synapses in the developing rat hippocampus. J Physiol 2004; 559:129–139.CrossRefGoogle Scholar
  8. 8.
    Crépel V, Aronov D, Jorquera I et al. A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron 2007; 54(l):105–120.PubMedCrossRefGoogle Scholar
  9. 9.
    Bolea S, Avignone E, Berretta N et al. Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 1999; 81:2095–2102.PubMedGoogle Scholar
  10. 10.
    Lamsa K, Palva JM, Ruusuvuori E et al. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J Neurophysiol 2000; 83:359–366.PubMedGoogle Scholar
  11. 11.
    Palva M, Lamsa K, Lauri SE et al. Fast network oscillations in the newborn rat hippocampus in vitro. J Neurosci 2000; 20(3):1170–1178.PubMedGoogle Scholar
  12. 12.
    Ben-Ari Y, Cherubini E, Corradetti R et al. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 1989; 416:303–325.PubMedGoogle Scholar
  13. 13.
    Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 2003; 4:481–495.PubMedCrossRefGoogle Scholar
  14. 14.
    Lerma J. Kainate receptor physiology. Curr Opin Pharmacol 2006; 6:89–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Pinheiro P, Mulle C. Kainate receptors. Cell Tissue Res 2006; 326:457–482.PubMedCrossRefGoogle Scholar
  16. 16.
    Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997; 388:179–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997; 388:182–186.PubMedCrossRefGoogle Scholar
  18. 18.
    Lauri SE, Bortolotto ZA, Bleakman D et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 2001; 32:697–709.PubMedCrossRefGoogle Scholar
  19. 19.
    Lauri SE, Segerstråle M, Vesikansa A et al. Endogenous activation of kainate receptors inhibits glutamatergic transmission and modulates network activity in the developing hippocampus. J. Neurosci 2005; 25(18):4473–4484.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmitz D, Mellor J, Nicoll RA. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 2001: 291:1972–1976.PubMedCrossRefGoogle Scholar
  21. 21.
    Melyan Z, Wheal HV, Lancaster B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 2002; 34(l):107–114.PubMedCrossRefGoogle Scholar
  22. 22.
    Ruiz A, Sachidhanandam S, Utvik JK et al. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J Neurosci 2005; 25(50):11710–11718.PubMedCrossRefGoogle Scholar
  23. 23.
    Fisahn A, Contractor A, Traub RD et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 2004; 24:9658–9668.PubMedCrossRefGoogle Scholar
  24. 24.
    Fisahn A. Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool. J Physiol 2005; 562(Pt l):65–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Nadler JV. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981; 29:2031–2042.PubMedCrossRefGoogle Scholar
  26. 26.
    Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 2000; 23(11):580–587.PubMedCrossRefGoogle Scholar
  27. 27.
    Lerma J, Paternain AV, Naranjo JR et al. Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci 1993; 90(24):11688–11692.PubMedCrossRefGoogle Scholar
  28. 28.
    Bleakman D, Ogden A-M, Ornstein PL et al. Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons. Eur J Pharmacol 1999; 378:331–337.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilding TJ, Huettner JE. Activation and desensitization of hippocampal kainate receptors. J Neurosci 1997; 17(8):2713–2721.PubMedGoogle Scholar
  30. 30.
    Wong LA, Mayer ML, Jane DE et al. Willardiines differentiate agonist binding sites for kainate-versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. J Neurosci 1994; 14(6):3881–3897.PubMedGoogle Scholar
  31. 31.
    Mulle C, Sailer A, Pérez-Otaño I et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998; 392:601–605.PubMedCrossRefGoogle Scholar
  32. 32.
    Smolders I, Bortolotto ZA, Clarke VR et al. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 2002; 5:796–804.PubMedGoogle Scholar
  33. 33.
    Rogawski MA, Gryder D, Castaneda D et al. GluR5 kainate receptors, seizures and the amygdale. Ann NY Acad Sci 2003; 985:150–162.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaminski RM, Banerjee M, Rogawski MA. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology 2004; 46:1097–1104.PubMedCrossRefGoogle Scholar
  35. 35.
    Huxter JR, Zinyuk LE, Roloff EL et al. Inhibition of kainate receptors reduces the frequency of hippocampal theta oscillations. J Neurosci 2007; 27(9):2212–2223.PubMedCrossRefGoogle Scholar
  36. 36.
    Traub RD, Bibbig A, LeBeau FE et al. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci 2004; 27:247–278.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown JT, Teriakidis A, Randall AD. A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology 2006; 50:47–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Christensen JK, Paternain AV, Selak S et al. A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 2004; 24:8986–8993.PubMedCrossRefGoogle Scholar
  39. 39.
    Jaskolski F, Coussen F, Nagarajan N et al. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci 2004; 24:2506–2515.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang XJ, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 1996; 16:6402–6413.PubMedGoogle Scholar
  41. 41.
    Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007; 8:45–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Mann EO, Paulsen O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 2007; 30:343–349.PubMedCrossRefGoogle Scholar
  43. 43.
    Cossart R, Esclapez M, Hirsch JC et al. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1998; 1: 470–478.PubMedCrossRefGoogle Scholar
  44. 44.
    Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci 1998; 1:479–486.PubMedCrossRefGoogle Scholar
  45. 45.
    Bureau I, Bischoff S, Heinemann SF et al. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 1999; 19:653–663.PubMedGoogle Scholar
  46. 46.
    Mulle C, Sailer A, Swanson GT et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 2000; 28:475–484.PubMedCrossRefGoogle Scholar
  47. 47.
    Semyanov A, Kullmann DM. Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nat Neurosci 2001; 4:718–723.PubMedCrossRefGoogle Scholar
  48. 48.
    Goldin M, Epsztein J, Jorquera I et al. Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency. J Neurosci 2007; 27:9560–9572.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang EJ, Harris AZ, Pettit DL. Synaptic kainate currents reset interneuron firing phase J. Physiol 2007; 578:259–273.PubMedCrossRefGoogle Scholar
  50. 50.
    Paternain AV, Herrera MT, Nieto MA et al. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000; 20:196–205.PubMedGoogle Scholar
  51. 51.
    Henze DA, Wittner L, Buzsáki G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 2002; 5:790–795.PubMedGoogle Scholar
  52. 52.
    Mori M, Abegg MH, Gähwiler BH et al. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 2004; 431:453–456.PubMedCrossRefGoogle Scholar
  53. 53.
    Bahn S, Volk B, Wisden W. Kainate receptor gene expression in the developing rat brain. J Neurosci 1994; 14:5525–5547.PubMedGoogle Scholar
  54. 54.
    Ritter LM, Vazquez DM, Meador-Woodruff JH. Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res Dev Brain Res 2002; 139:227–236.PubMedCrossRefGoogle Scholar
  55. 55.
    Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 1999; 400:569–573.PubMedCrossRefGoogle Scholar
  56. 56.
    Kidd FL, Coumis U, Collingridge GL et al. A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 2002; 34:635–646.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee CJ, Kong H, Manzini MC et al. Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci 2001; 21:4572–4581.PubMedGoogle Scholar
  58. 58.
    Lauri SE, Vesikansa A, Segerstråle M et al. Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. Neuron 2006; 50:415–429.PubMedCrossRefGoogle Scholar
  59. 59.
    Sallert M, Malkki H, Segerstråle M et al. Effects of the kainate receptor agonist ATPA on glutamatergic synaptic transmission and plasticity during early postnatal development. Neuropharmacology 2007; 52:1354–1365.PubMedCrossRefGoogle Scholar
  60. 60.
    Vignes M, Clarke VR, Parry MJ et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 1998; 37(10-11):1269–1277.PubMedCrossRefGoogle Scholar
  61. 61.
    Clarke VRJ, Collingridge GL. Characterisation of the effects of ATPA, a GLUK5 receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. Neuropharmacology 2002; 42:889–902.PubMedCrossRefGoogle Scholar
  62. 62.
    Partovi D, Frerking M. Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors. Neuropharmacology 2006; 51:1030–1037.PubMedCrossRefGoogle Scholar
  63. 63.
    Maingret F, Lauri S, Taira T et al. Profound regulation of neonatal CA1 rat hippocampal GABAergic transmission by functionally distinct kainate receptor populations. J Physiol 2005; 567(Pt 1): 131–142.PubMedCrossRefGoogle Scholar
  64. 64.
    Rodriguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 9:893–901.CrossRefGoogle Scholar
  65. 65.
    Jiang L, Xu J, Nedergaard M et al. A kainate receptor increases the efficacy of GABAergic synapses. Neuron 2001; 30:503–513.PubMedCrossRefGoogle Scholar
  66. 66.
    Garaschuk O, Hanse E, Konnerth A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 1998; 507:219–236.PubMedCrossRefGoogle Scholar
  67. 67.
    Khalilov I, Dzhala V, Medina I et al. Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. Eur J Neurosci 1999; 11:3468–3480.PubMedCrossRefGoogle Scholar
  68. 68.
    Tremblay E, Nitecka L, Berger ML et al. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience 1984; 13:1051–1072.PubMedCrossRefGoogle Scholar
  69. 69.
    Khalilov I, Hirsch J, Cossart R et al. Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol 2002; 88:523–527.PubMedGoogle Scholar
  70. 70.
    Hennou S, Khalilov I, Diabira D et al. Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 2002; 16:197–208.PubMedCrossRefGoogle Scholar
  71. 71.
    Tashiro A, Dunaevsky A, Blazeski R et al. Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: A two step model of synaptogenesis. Neuron 2003; 38:773–784.PubMedCrossRefGoogle Scholar
  72. 72.
    Marchal C, Mulle C. Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 2004; 561(Pt l):27–37.PubMedCrossRefGoogle Scholar
  73. 73.
    Vesikansa A, Sallert M, Taira T et al. Long-term activation of kainate receptor subunit GluR5 increases mEPSC frequency in the hippocampal slice cultures. J Physiol 2006; 583(Pt 1):145–157.CrossRefGoogle Scholar
  74. 74.
    Huupponen J, Molchanova SM, Taira T et al. Susceptibility for homeostatic plasticity is down-regulated in parallel with maturation of the rat hippocampal synaptic circuitry. J Physiol 2007; 581(Pt 2):505–514.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Neuroscience Center and Department of Bio- and Environmental SciencesUniversity of HelsinkiFinland

Personalised recommendations