Skip to main content

Metabotropic Actions of Kainate Receptors in the Control of Glutamate Release in the Hippocampus

  • Chapter
Book cover Kainate Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 717))

Abstract

Kainate-type glutamate receptors (KARs) structurally present the credentials of the other ionotropic glutamate receptor (iGluR) family members (NMDA and AMPA receptors), but functionally often purport examples of a metabotropic mode of operation. In the present chapter, we describe these metabotropic roles of KARs in the modulation of glutamate release in the hippocampus at CA3 Schaffer Collateral (SC)-CA1 Pyramidal Cell (PC) synapses and dentate gyrus granule cell Mossy Fiber (MF)-CA3 PC synapses. As autoreceptors on SC terminals, KARs inhibit the release of glutamate at SC-CA1 PC synapses through a mechanism dependent on a pertussis toxin-sensitive Gi/o protein thought to couple via its Gβγ subunit to a decrease in Ca2+ channel function. At MF-CA3 PC synapses, autoreceptors on MF terminals respond diametrically depending on the agonist concentration. At low KA concentrations (< 100 nM), a G-protein-independent process invokes the activation of proteins kinase A (PKA) to effect a facilitation of glutamate release. This facilitation possibly involves the Ca2+-dependent (rather than GPCR-dependent) activation of adenylate cyclase (AC). At high KA concentrations (<100 nM), a mechanism involving a pertussis toxin-sensitive Gi/o protein is invoked to inhibit AC activity and thereby suppress PKA activity. Taken together with the heterosynaptic regulation of GABA release by KARs working with a metabotropic modus operandi, there is therefore compelling evidence that these ionotropic glutamate receptors are involved in a noncanonical modulation of glutamate release that does not rely on their typical ionotropic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonas P, Monyer H. Ionotropic glutamate receptors in the CNS. Springer, Berlin, 1999.

    Google Scholar 

  2. Sander T, Janz D, Ramel C et al. Refinement of map position of the human GluR6 kainate receptor gene (GRIK2) and lack of association and linkage with idiopathic and generalized epilepsies. Neurology 1995;45:1713–1720.

    PubMed  CAS  Google Scholar 

  3. Sander T, Hildmann T, Kretz R et al. Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am J Med Genet 1997; 74:416–421.

    Article  PubMed  CAS  Google Scholar 

  4. Mulle C, Sailer A, Perez-Otano I et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-déficient mice. Nature 1998; 392:601–605.

    Article  PubMed  CAS  Google Scholar 

  5. McDonald ME, Vonsattel JP, Shrinidi J et al. Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 1999; 53:1330–1332.

    Google Scholar 

  6. Eubanks JH, Puraman RS, Klecner NW et al. The gene encoding the glutamate receptor subunit GluR5 is located on human chromosome 21q21.1-221 in the vicinity of the gene for familial amyotrophic lateral sclerosis. Proc Natl Acad Sei USA 1993; 90:178–182.

    Article  CAS  Google Scholar 

  7. Ferkany JW, Zaczek R, Coyle JT. The mechanism of kainic acid neurotoxicity. Nature 1984; 308:561–562.

    Article  PubMed  CAS  Google Scholar 

  8. Chittajallu R, Vignes M, Dev KK et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 1996; 379:78–81.

    Article  PubMed  CAS  Google Scholar 

  9. Kamiya H, Ozawa S. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J Physiol 1998; 509:833–845.

    Article  PubMed  CAS  Google Scholar 

  10. Vignes M, Clarke VJR, Parry MJ et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 1998; 37:1269–1277.

    Article  PubMed  CAS  Google Scholar 

  11. Frerking M, Schmitz D, Zhou Q et al. Kainate receptors depress excitatory synaptic transmission at CA3-CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 2001; 21:2958–2966.

    PubMed  CAS  Google Scholar 

  12. Clarke VRJ, Collingridge GL. Characterisation of the effects of ATPA, a GLUK5 receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. Neuropharmacology 2002;42:889–902.

    Article  PubMed  CAS  Google Scholar 

  13. Lauri SE, Vesikansa A, Segerstrale M et al. Functional maturation of CA1 synapses involves activity-dependent loss of kainate receptor-mediated inhibition of glutamate release. Neuron 2006; 50:415–429.

    Article  PubMed  CAS  Google Scholar 

  14. Brown DA, Sihra TS. Presynaptic signaling by heterotrimeric G-proteins in Pharmacology of Neurotransmitter Release (Südhof TC, Starke K, ed.), Handb Exp Pharmacol. Series (Springer) 2008; (184):207–260.

    Google Scholar 

  15. Nicoll RA, Schmitz D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 2005; 6:863–876.

    Article  PubMed  CAS  Google Scholar 

  16. Perkinton MS, Sihra TS. A high-affinity presynaptic kainate-type glutamate receptor facilitates glutamate exocytosis from cerebral cortex nerve terminals (synaptosomes). Neuroscience 1999; 90:1281–1292.

    Article  PubMed  CAS  Google Scholar 

  17. Kullmann DM. Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity. Neuron 2001; 32:561–564.

    Article  PubMed  CAS  Google Scholar 

  18. Semyanov A, Kullmann DM. Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nat Neurosci 2001; 4:718–723.

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez-Moreno A, Sihra TS. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol 2004; 557:733–745.

    Article  PubMed  CAS  Google Scholar 

  20. Weisskopf MG, Castillo PE, Zalutsky RA et al. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 1994; 265:1878–1882.

    Article  PubMed  CAS  Google Scholar 

  21. Lauri SE, Bortolotto ZA, Nistico R et al. A role of Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron 2003; 39:327–341.

    Article  PubMed  CAS  Google Scholar 

  22. Contractor A, Swanson GT, Sailer A et al. Identification of the kainate receptors subunit underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 2000; 20:8269–8278.

    PubMed  CAS  Google Scholar 

  23. Schmitz D, Mellor J, Nicoll RA. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 2001; 291:1972–1976.

    Article  PubMed  CAS  Google Scholar 

  24. Lauri SE, Bortolotto ZA, Bleakman D et al. A critical role of a facilitary presynaptic kainate receptor in mossy-fiber LTP. Neuron 2001; 32:697–709.

    Article  PubMed  CAS  Google Scholar 

  25. Lauri SE, Delany C, Clarke VEJ et al. Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. Neuropharmacology 2001; 41:907–915.

    Article  PubMed  CAS  Google Scholar 

  26. Breustedt J, Schmitz D. Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J Neurosci 2004; 24:10093–10098.

    Article  PubMed  CAS  Google Scholar 

  27. Kamiya H, Ozawa S. Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J Physiol 2000; 523:653–665.

    Article  PubMed  CAS  Google Scholar 

  28. Schmitz D, Frerking M, Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 2000; 27:327–338.

    Article  PubMed  CAS  Google Scholar 

  29. Contractor A, Swanson G, Heinemann SE Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29:209–216.

    Article  PubMed  CAS  Google Scholar 

  30. Contractor A, Sailer A, Darstein M et al. Loss of kainate receptor-mediated heterosynaptic facilitation at mossy-fiber synapses in KA2-/- mice. J Neurosci 2003; 23:422–429.

    PubMed  CAS  Google Scholar 

  31. Negrete-Díaz JV, Sihra TS, Delgado-García JM et al. Kainate receptor-mediated inhibition of glutamate release involves protein kinase A in the mouse hippocampus. J Neurophysiol 2006; 96:1829–1837.

    Article  PubMed  Google Scholar 

  32. Negrete-Díaz JV, Sihra TS, Delgado-García JM et al. Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. J Neural Transm 2007; 114:1425–1431.

    Article  PubMed  Google Scholar 

  33. Kamiya H, Umeda K, Ozawa S et al. Presynaptic Ca2+ entry is unchanged during mossy fiber long-term potentiation. J Neurosci 2002; 22:10 524–10 528.

    CAS  Google Scholar 

  34. Kobayashi K, Manabe T, Takahashi T Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 1996; 273:648–650.

    Article  PubMed  CAS  Google Scholar 

  35. Tzounopoulos T, Janz R, Sudhof TC et al. A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 1998; 21:837–845.

    Article  PubMed  CAS  Google Scholar 

  36. Bortolotto ZA, Nistico R, More JC et al. Kainate receptors and mossy fiber LTP. Neurotoxicology 2005; 26:769–777.

    Article  PubMed  CAS  Google Scholar 

  37. Lauri SE, Segerstale M, Vesikansa A et al. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2005; 25:4473–4484.

    Article  PubMed  CAS  Google Scholar 

  38. Kidd FL, Coumis U, Collingridge GL et al. A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 2002; 34:635–646.

    Article  PubMed  CAS  Google Scholar 

  39. Li H, Chen A, Xing G et al. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat Neurosci 2001; 4:612–620.

    Article  PubMed  CAS  Google Scholar 

  40. Crowder TL, Weiner JL. Functional characterization of kainate receptors in the rat nucleus accumbens core region. J Neurophysiol 2002; 88:41–48.

    PubMed  CAS  Google Scholar 

  41. Casassus G, Mulle C. Functional characterization of kainate receptors in the mouse nucleus accumbens. Neuropharmacology 2002; 42:603–611.

    Article  PubMed  CAS  Google Scholar 

  42. Kerchner GA, Wilding TJ, Li P et al. Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci 2001; 21:59–66.

    PubMed  CAS  Google Scholar 

  43. Delaney AJ, Jahr CE. Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron 2002; 36:475–482.

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez-Moreno, Sihra TS. Kainate receptors with a metabotropic modus operandi. Trends Neurosci 2007; 30:630–637.

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez-Moreno A, Sihra TS. Metabotropic actions of kainate receptors in the CNS. J Neurochem 2007; 103:2121–2135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Rodríguez-Moreno or Talvinder S. Sihra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodríguez-Moreno, A., Sihra, T.S. (2011). Metabotropic Actions of Kainate Receptors in the Control of Glutamate Release in the Hippocampus. In: Rodríguez-Moreno, A., Sihra, T.S. (eds) Kainate Receptors. Advances in Experimental Medicine and Biology, vol 717. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9557-5_4

Download citation

Publish with us

Policies and ethics