BTB-Kelch Proteins and Ubiquitination of Kainate Receptors

  • John MarshallEmail author
  • Leslie A. C. Blair
  • Jeffrey D. Singer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 717)


Kainate receptors (KAR) form a class of glutamate receptors that have been implicated in epilepsy, stroke, Alzheimer’s and neuropathic pain.1 KAR subtypes are known to be segregated to specific locations within neurons and play significant roles in synaptic transmission and plasticity.2 Increasing evidence suggests a the role for ubiqutination in regulating the number of synaptic neurotransmitter receptors.3, 4, 5 The ubiquitin pathway consists of activation (E1), conjugation (E2) and ligation (E3). Cullins form the largest family of E3 ligase complexes. We have recently shown that the BTB/Kelch domain proteins, actinfilin and mayven, bind both Cul3 and specific KAR subtypes (GluR6 and GluR5-2b) to target these KARs for ubiquitination and degradation.5 In this chapter we will review how these interactions occur, what they mean for the stability of KARs and their associated proteins and how, in turn, they may affect synaptic functions in the central nervous system.


Dendritic Spine Kainate Receptor Strate Adaptor Pyramidal Cell Synapse Surface GluR6 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dingledine R, Borges K, Bowie D et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51:7–61.PubMedGoogle Scholar
  2. 2.
    Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 2003; 4:481–495.PubMedCrossRefGoogle Scholar
  3. 3.
    Burbea M, Dreier L, Dittman JS et al. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 2002; 35:107–120.PubMedCrossRefGoogle Scholar
  4. 4.
    Colledge M, Snyder EM, Crozier RA et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 2003; 40:595–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Salinas GD, Blair LA, Needleman LA et al. Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem 2006; 281:40164–40173.PubMedCrossRefGoogle Scholar
  6. 6.
    Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 2000; 23:580–587.PubMedCrossRefGoogle Scholar
  7. 7.
    Savinainen A, Garcia EP, Dorow D et al. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via postsynaptic density protein 95. J Biol Chem 2001; 276:11382–11386.PubMedCrossRefGoogle Scholar
  8. 8.
    Guerrini R, Andermann E, Avoli M et al. Cortical dysplasias, genetics and epileptogenesis. Adv Neurol 1999; 79:95–121.PubMedGoogle Scholar
  9. 9.
    Lerma J. Kainate reveals its targets. Neuron 1997; 19:1155–1158.PubMedCrossRefGoogle Scholar
  10. 10.
    Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal inter-neurons. Nat Neurosci 1998; 1:479–486.PubMedCrossRefGoogle Scholar
  11. 11.
    Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 1999; 400:569–573.PubMedCrossRefGoogle Scholar
  12. 12.
    Lauri SE, Bortolotto ZA, Bleakman D et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 2001; 32:697–709.PubMedCrossRefGoogle Scholar
  13. 13.
    Lauri SE, Segerstrale M, Vesikansa A et al. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2005; 25:4473–4484.PubMedCrossRefGoogle Scholar
  14. 14.
    Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997; 388:182–186.PubMedCrossRefGoogle Scholar
  15. 15.
    Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997; 388:179–182.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20:1211–1218.PubMedCrossRefGoogle Scholar
  17. 17.
    Fisahn A, Heinemann SF, McBain CJ. The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 2005; 562(Pt l):199–203.PubMedCrossRefGoogle Scholar
  18. 18.
    Sommer B, Burnashev N, Verdoorn TA et al. A glutamate receptor channel with high affinity for domoate and kainate. Embo J 1992; 11:1651–1656.PubMedGoogle Scholar
  19. 19.
    Herb A, Burnashev N, Werner P et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 1992; 8:775–785.PubMedCrossRefGoogle Scholar
  20. 20.
    Isaac JT, Mellor J, Hurtado D et al. Kainate receptor trafficking: physiological roles and molecular mechanisms. Pharmacol Ther 2004; 104:163–172.PubMedCrossRefGoogle Scholar
  21. 21.
    Bettler B, Boulter J, Hermans-Borgmeyer I et al. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 1990; 5:583–595.PubMedCrossRefGoogle Scholar
  22. 22.
    Cui C, Mayer ML. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6 and GluR7. J Neurosci 1999; 19:8281–8291.PubMedGoogle Scholar
  23. 23.
    Schiffer HH, Swanson GT, Heinemann SF. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 1997; 19:1141–1146.PubMedCrossRefGoogle Scholar
  24. 24.
    Wenthold RJ, Trumpy VA, Zhu WS et al. Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies. J Biol Chem 1994; 269:1332–1339.PubMedGoogle Scholar
  25. 25.
    Standley S, Roche KW, McCallum J et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000; 28:887–898.PubMedCrossRefGoogle Scholar
  26. 26.
    Scott DB, Blanpied TA, Swanson GT et al. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 2001; 21:3063–3072.PubMedGoogle Scholar
  27. 27.
    Greger IH, Khatri L, Kong X et al. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 2003; 40:763–774.PubMedCrossRefGoogle Scholar
  28. 28.
    Ren Z, Riley NJ, Garcia EP et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 2003; 23:6608–6616.PubMedGoogle Scholar
  29. 29.
    Ren Z, Riley NJ, Needleman LA et al. Cell surface expression of GluR5 kainate receptors is regulated by an endoplasmic reticulum retention signal. J Biol Chem 2003; 278:52700–52709.PubMedCrossRefGoogle Scholar
  30. 30.
    Yan S, Sanders JM, Xu J et al. A C-terminal determinant of GluR6 kainate receptor trafficking. J Neurosci 2004; 24:679–691.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaskolski F, Coussen F, Nagarajan N et al. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci 2004; 24:2506–2515.PubMedCrossRefGoogle Scholar
  32. 32.
    Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29:209–216.PubMedCrossRefGoogle Scholar
  33. 33.
    Clarke VR, Collingridge GL. Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. Neuropharmacology 2004; 47:363–372.PubMedCrossRefGoogle Scholar
  34. 34.
    Bureau I, Dieudonne S, Coussen F et al. Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci USA 2000; 97:6838–6843.PubMedCrossRefGoogle Scholar
  35. 35.
    Christensen JK, Paternain AV, Selak S et al. A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 2004; 24:8986–8993.PubMedCrossRefGoogle Scholar
  36. 36.
    Hegde AN, DiAntonio A. Ubiquitin and the synapse. Nat Rev Neurosci 2002; 3:854–861.PubMedCrossRefGoogle Scholar
  37. 37.
    Murphey RK, Godenschwege TA. New roles for ubiquitin in the assembly and function of neuronal circuits. Neuron 2002; 36:5–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 2003; 6:231–242.PubMedCrossRefGoogle Scholar
  39. 39.
    Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 1999; 72:299–328.PubMedCrossRefGoogle Scholar
  40. 40.
    Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15:435–467.PubMedCrossRefGoogle Scholar
  41. 41.
    Furukawa M, Ohta T, Xiong Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem 2002; 277:15758–15765.PubMedCrossRefGoogle Scholar
  42. 42.
    Furukawa M, He YJ, Borchers C et al. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 2003; 5:1001–1007.PubMedCrossRefGoogle Scholar
  43. 43.
    Xue F, Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993; 72:681–693.PubMedCrossRefGoogle Scholar
  44. 44.
    Geyer R, Wee S, Anderson S et al. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 2003; 12:783–790.PubMedCrossRefGoogle Scholar
  45. 45.
    Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005; 25:162–171.PubMedCrossRefGoogle Scholar
  46. 46.
    Bomont P, Cavalier L, Blondeau F et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 2000; 26:370–374.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto A, Friedlein A, Imai Y et al. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 2005; 280:3390–3399.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Y, Derin R, Petralia RS et al. Actinfilin, a brain-specific actin-binding protein in postsynaptic density. J Biol Chem 2002; 277:30495–30501.PubMedCrossRefGoogle Scholar
  49. 49.
    Soltysik-Espanola M, Rogers RA, Jiang S et al. Characterization of Mayven, a novel actin-binding protein predominantly expressed in brain. Mol Biol Cell 1999; 10:2361–2375.PubMedGoogle Scholar
  50. 50.
    Sheng M, Pak DT. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 2000; 62:755–778.PubMedCrossRefGoogle Scholar
  51. 51.
    Gao L, Blair LA, Salinas GD et al. Insulin-like growth factor-1 modulation of CaV1.3 calcium channels depends on Ca2+ release from IP3-sensitive stores and calcium/calmodulin kinase II phosphorylation of the alpha1 subunit EF hand. J Neurosci 2006; 26:6259–6268.PubMedCrossRefGoogle Scholar
  52. 52.
    Sala C, Piech V, Wilson NR et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001; 31:115–130.PubMedCrossRefGoogle Scholar
  53. 53.
    Bingol B, Schuman EM. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 2006; 441:1144–1148.PubMedCrossRefGoogle Scholar
  54. 54.
    Kang MI, Kobayashi A, Wakabayashi N et al. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA 2004; 101:2046–2051.PubMedCrossRefGoogle Scholar
  55. 55.
    Piserchio A, Salinas GD, Li T et al. Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem Biol 2004; 11:469–473.PubMedCrossRefGoogle Scholar
  56. 56.
    Goebel DJ, Winkler BS. Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina. J Neurochem 2006; 98:1732–1745.PubMedCrossRefGoogle Scholar
  57. 57.
    Schaefer H, Rongo C. KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell 2006; 17:1250–1260.PubMedCrossRefGoogle Scholar
  58. 58.
    Sumara I, Peter M. A Cul3-based E3 ligase regulates mitosis and is required to maintain the spindle assembly checkpoint in human cells. Cell Cycle 2007; 6:3004–3010.PubMedCrossRefGoogle Scholar
  59. 59.
    Rondou P, Haegeman G, Vanhoenacker P et al. BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase. J Biol Chem 2008; 283:11083–11096.PubMedCrossRefGoogle Scholar
  60. 60.
    Mesrobian CM, Bentley CA, Perdue SA et al. The Cul3/KLHL5 E3 Ligase regulates P60/Katanin and is required for normal mitosis in mammalian cells. Submitted.Google Scholar
  61. 61.
    Dequen F, Bomont P, Gowing G et al. Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 2008; 107:253–264.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenberg CC, Connelly PS, Daniels MP et al. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp Cell Res 2008; 314:1177–1191.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • John Marshall
    • 1
    Email author
  • Leslie A. C. Blair
  • Jeffrey D. Singer
  1. 1.Department of Molecular Pharmacology, Physiology and BiotechnologyBrown UniversityProvidenceUSA

Personalised recommendations