Skip to main content

Finite Energy Weak Solutions to the Quantum Hydrodynamics System

  • Conference paper
  • First Online:
  • 1920 Accesses

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 153))

Abstract

In this paper we consider the global existence of weak solutions to a class of Quantum Hydrodynamics (QHD) systems with initial data, arbitrarily large in the energy norm. These type of models, initially proposed by Madelung [24], have been extensively used in Physics to investigate Supefluidity and Superconductivity phenomena [10], [19] and more recently in the modeling of semiconductor devices [11]. Our approach is based on various tools, namely the wave functions polar decomposition, the construction of approximate solution via a fractional steps method which iterates a SchrÖodinger Madelung picture with a suitable wave function updating mechanism. Therefore several a priori bounds of energy, dispersive and local smoothing type allow us to prove the compactness of the approximating sequences. No uniqueness result is provided. A more detailed exposition of the results is given in [2].

AMS(MOS) subject classifications. 35Q40 (Primary); 35Q55, 35Q35, 82D37, 82C10, 76Y05 (Secondary).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio L., Transport Equations and Cauchy Problem for BV Vector Fields, Inventiones Mathematicae 158: 227–260 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Antonelli and P. Marcati, On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics, Comm. Math. Phys., 287(2): 657–686 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  3. Antonelli P. and Marcati P., to appear.

    Google Scholar 

  4. Carlen E., Conservative Diffusions, Comm. Math. Phys. 94: 293–315 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  5. Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, AMS, 2003.

    Google Scholar 

  6. Constantin P. and Saut J.C., Local Smoothing Properties of Dispersive Equations, J. Amer. Math. Soc. 1: 413–439 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. Dalfovo F., Giorgini S., Pitaevskii L., and Stringari S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71: 463–512 (1999).

    Article  Google Scholar 

  8. Di Perna R.J. and Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98: 511–547 (1989).

    Article  MathSciNet  Google Scholar 

  9. Degond P. and Ringhofer C., Quantum moment hydrodynamics entropy principle, J. Stat. Phys. 112: 587–628 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. Feynman R.P., Superfluidity and Superconductivity, Rev. Mod. Phys., 29(2): 205 (1957).

    Article  Google Scholar 

  11. Gardner C., The Quantum Hydrodynamic Model for Semiconductor Devices SIAM J. Appl. Math. 54: 409–427 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. Gasser I. and Markowich P., Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptot. Anal. 14(2): 97–116 (1997).

    MATH  MathSciNet  Google Scholar 

  13. Guerra F. and Morato L., Quantization of Dynamical Systems and Stochastic Control Theory, Phys. Rev. D 27: 1771–1786 (1983).

    Article  MathSciNet  Google Scholar 

  14. Jüngel A., Mariani M.C., and Rial D., Local Existence of Solutions to the Transient Quantum Hydrodynamic Equations, Math. Models Methods Appl. Sci. 12(4): 485–495 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. Khalatnikov I.M., An introduction to the Theory of Superfluidity, Benjamin N.Y., 1965.

    Google Scholar 

  16. Keel M. and Tao T., Endpoint Strichartz Estimates, Amer. J. Math. 120: 955–980 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. Kirkpatrick T.R. and Dorfman J.R., Transport theory for a weakly interacting condensed Bose gas, Phys. Rev. A 28: 2576 (1983).

    Article  MathSciNet  Google Scholar 

  18. Kostin M., On the Schrödinger-Langevin equation, J. Chem. Phys. 57: 3589–3591 (1972).

    Article  Google Scholar 

  19. Landau L.D., Theory of the Superfluidity of Helium II, Phys. Rev. 60: 356 (1941).

    Article  MATH  Google Scholar 

  20. Li H. and Lin C.-K., Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems, EJDE 93: 1–17 (2003).

    MathSciNet  Google Scholar 

  21. Li H. and Marcati P., Existence and asymptotic behavior of multi-dimensional quanntum hydrodynamic model for semiconductors, Comm. Math. Phys. 245(2): 215–247 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  22. Nelson E., Quantum Fluctuations, Princeton University Press, 1984.

    Google Scholar 

  23. Lifshitz E.M. and Pitaevskii L., Physical Kinetics, Pergamon, Oxford (1981).

    Google Scholar 

  24. Madelung E., Quantentheorie in hydrodynamischer form, Z. Physik, 40: 322 (1927).

    Article  Google Scholar 

  25. Rakotoson J.M. and Temam R., An Optimal Compactness Theorem and Application to Elliptic-Parabolic Systems, Appl. Math. Letters 14: 303–306 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  26. Teufel S. and Tumulka R., Simple proof for global existence of bohmian trajectories, Comm. Math. Phys. 258: 349–365 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  27. Weigert S., How to determine a quantum state by measurements: the Pauli problem for a particle with arbitrary potential, Phys. Rev. A 53: 4, 2078–2083 (1996).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Antonelli, P., Marcati, P. (2011). Finite Energy Weak Solutions to the Quantum Hydrodynamics System. In: Bressan, A., Chen, GQ., Lewicka, M., Wang, D. (eds) Nonlinear Conservation Laws and Applications. The IMA Volumes in Mathematics and its Applications, vol 153. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9554-4_9

Download citation

Publish with us

Policies and ethics