Skip to main content

Charge Transport in an Incompressible Fluid: New Devices in Computational Electronics

  • Conference paper
  • First Online:
Nonlinear Conservation Laws and Applications

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 153))

  • 1925 Accesses

Abstract

A model for electro-diffusion is discussed, characterized by the Navier- Stokes/Poisson-Nernst-Planck system. In particular, we emphasize: (i) significant applications; (ii) existence for the initial/boundary-value problem; (iii) aspects of the steady problem.

AMS(MOS) subject classifications. Primary 35Q30, 76D03, 76C05.

The work of the author was supported in part by ONR/Darpa grant LLCN00014-05-C-0241 and in part by NSF grant DMS-0935967.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices ED-17 (1970), pp. 38–47.

    Article  Google Scholar 

  2. G.A. Buxton and N. Clarke, Computer simulation of polymer solar cells, Modelling Simul. Mater. Sci. Eng. 15 (2007), pp. 13–26.

    Article  Google Scholar 

  3. D.-P. Chen, R.E. Eisenberg, J.W. Jerome, and C.-W. Shu, A hydrodynamic model of temperature change in the open ionic channel, Biophys. J. 69 (1995), pp. 2304–2322.

    Article  Google Scholar 

  4. G.-Q. Chen, J.W. Jerome, C.-W. Shu, and D. Wang, Two -carrier semiconductor device models with geometric structure and symmetry properties. In, Modelling and Computation for Applications in Mathematics, Science, and Engineering (J. Jerome, ed.), Oxford Univ. Press, pages 103–140, 1998.

    Google Scholar 

  5. G.-Q. Chen, J.W. Jerome, and D. Wang, Compressible Euler-Maxwell equations, Transport Theory and Statistical Physics 29 (2000), pp. 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Chen, B. Cockburn, C. Gardner, and J. Jerome, Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode, J. Comp. Phys. 117 (1995), pp. 274–280.

    Article  MATH  Google Scholar 

  7. Z. Chen, B. Cockburn, J. Jerome, and C.-W. Shu, Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation, VLSI DESIGN 3 (1995), pp. 145–158.

    Article  Google Scholar 

  8. H.-W. Choi and M. Paraschivoiu, Advanced hybrid-flux approach for output bounds of electro-osmotic flows: adaptive refinement and direct equilibrating strategies, Microfluidics and Nanofluidics 2 (2006), pp. 154–170.

    Article  Google Scholar 

  9. C.A. Chung, C.W. Chen, C.P. Chen, and C.S. Tseung, Enhancement of cell growth in tissue engineering constructs under direct perfusion: modeling and simulation, Biotechnol. Bioeng. 97 (2007), pp. 1603–1616.

    Article  Google Scholar 

  10. P. Degond, F. Mehats, and C. Ringhofer, Quantum hydrodynamic models derived from the entropy principle. In, Nonlinear Partial Differential Equations and Related Analysis (G.-Q. Chen, G. Gasper, and J.W. Jerome, eds.), Contemporary Math. Vol. 371, American Math. Soc., Providence, pages 107–131, 2005.

    Google Scholar 

  11. E. Fatemi, J. Jerome, and S. Osher, Solution of the hydrodynamic device model using high-order nonoscillatory shock capturing algorithms, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems CAD-10 (1991), pp. 232–244.

    Article  Google Scholar 

  12. P. Fromherz, Neuroelectronics interfacing: Semiconductor chips with ion channels, cells, and brain, In, Nanoelectronics and Information Technology (R. Weise, ed.), Wiley-VCH, Berlin, pages 781–810, 2003.

    Google Scholar 

  13. C.L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54 (1994), pp. 409–427.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.L. Gardner, J.W. Jerome, and D.J. Rose, Numerical methods for the hydrodynamic device model: Subsonic flow, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems CAD-8 (1989), pp. 501–507.

    Article  Google Scholar 

  15. Y. Hu, J. Lee, C. Werner, and D. Li, Electrokinetically controlled concentration gradients in micro-chambers in microfluidic systems, Microfluidics and Nanofluidics 2 (2006), pp. 141–153.

    Article  Google Scholar 

  16. International Workshops on Computational Electronics (held at eighteen month intervals), URL: http://www.iwce.org.

  17. J.W. Jerome, Approximation of Nonlinear Evolution Systems, Academic Press, New York, 1983

    MATH  Google Scholar 

  18. J.W. Jerome, Analysis of Charge Transport, Springer-Verlag, 1996.

    Google Scholar 

  19. J.W. Jerome, An analytical study of smooth solutions of the Blotekjaer hydrodynamic model of electron transport, VLSI Design 15 (2002), pp. 729–742.

    Article  MathSciNet  Google Scholar 

  20. J.W. Jerome, An analytical approach to charge transport in a moving medium, Transport Theory Statist. Phys. 31 (2002), pp. 333–366.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.W. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions, Differential and Integral Equations 16 (2003), pp. 1345–1368.

    MathSciNet  MATH  Google Scholar 

  22. J.W. Jerome, Mathematical advances and horizons for classical and quantum-perturbed drift-diffusion systems: solid state devices and beyond, Journal of Computational Electronics 8 (2009), pp.132–141.

    Article  Google Scholar 

  23. J.W. Jerome and R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary value problem, Nonlinear Analysis, 71 (2009), e2487–e2497.

    Article  MathSciNet  Google Scholar 

  24. J.W. Jerome and C.-W. Shu, Energy models for one-carrier transport in semiconductor devices, In Semiconductors, Part II (W.M. Coughran, J. Cole, P. Lloyd, and J.K. White eds.) IMA Volumes in Mathematics and its Applications, Vol. 59, Springer, New York, pages 185–207, 1994.

    Google Scholar 

  25. J.W. Jerome and C.-W. Shu, Transport effects and characteristic modes in the modeling and simulation of submicron devices, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, CAD-14 (1995), pp. 917–923.

    Article  Google Scholar 

  26. J.W. Jerome and C.-W. Shu, Energy transport systems for semiconductors: Analysis and simulation, In Proceedings, First World Congress of Nonlinear Analysts, Walter de Gruyter, Berlin, pages 3835–3846, 1995.

    Google Scholar 

  27. A. Jüngel, Quasi-hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 2001.

    Google Scholar 

  28. M. Longaretti, B. Chini, and J.W. Jerome, and R. Sacco, Electrochemical modeling and characterization of voltage operated channels in nano-bioelectronics, Sensor Letters 6 (2008), pp. 49–56.

    Article  Google Scholar 

  29. M. Longaretti, B. Chini, J.W. Jerome, and R. Sacco, Computational modeling and simulation of complex systems in bio-electronics, Journal of Computational Electronics 7 (2008), pp. 10–13.

    Article  Google Scholar 

  30. M. Longaretti, G. Marino, B. Chini, J.W. Jerome, and R. Sacco, Computational models in nano-bio-electronics: simulation of ionic transport in voltage operated channels, Journal of Nanoscience and Nanotechnology 8 (2008), pp. 3686–3694.

    Google Scholar 

  31. Yoichiro Mori, Joseph W. Jerome, and Charles Peskin, Three-dimensional model of electrical activity in biological cells, Bulletin of the Mathematical Institute, Academia Sinica (Taiwan) 2 (2007), pp. 367–390.

    MathSciNet  MATH  Google Scholar 

  32. E. Neher, Molecular biology meets microelectronics, Nature Biotechnol. 19 (2001), pp. 121–124.

    Article  Google Scholar 

  33. A. Offenhäuser, J. Rühe, and W. Knoll, Neuronal cells cultured on modified microelectronic device structures, Journal of Vacuum Science and Technology A 13 (5) (1995), pp. 2606–2612.

    Article  Google Scholar 

  34. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, New York, 1999.

    MATH  Google Scholar 

  35. M.T. Raimondi, F. Boschetti, F. Migliavacca, M. Cioffi, and G. Dubini, Micro-fluid dynamics in three-dimensional engineered cell systems in bioreactors, In, Topics in Tissue Engineering (N. Ashammakhi and R.L. Reis, eds.), Vol. 2, Chapter 9, 2005.

    Google Scholar 

  36. I. Rubinstein, Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1990.

    Google Scholar 

  37. M. Rudan and F. Odeh, Multi-dimensional discretization scheme for the hydrodynamic model of semiconductor devices, COMPEL 5 (1986), pp. 149–183.

    MathSciNet  MATH  Google Scholar 

  38. M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system Math. Models and Methods in Appl. Sci. 19 (2009), pp. 993–1015.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Shockley, Electrons and Holes in Semiconductors, Van Nostrand, Princeton, N.J., 1950.

    Google Scholar 

  40. B. Straub, E. Meyer, and P. Fromherz, Recombinant maxi-K channels on transistor, a prototype of ionic-electronic interfacing 19 (2001), pp. 121–124.

    Google Scholar 

  41. B. Zhang and J. Jerome, On a steady-state quantum hydrodynamic model for semiconductors, Nonlinear Analysis 26 (1996), pp. 845–856.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Jerome, J.W. (2011). Charge Transport in an Incompressible Fluid: New Devices in Computational Electronics. In: Bressan, A., Chen, GQ., Lewicka, M., Wang, D. (eds) Nonlinear Conservation Laws and Applications. The IMA Volumes in Mathematics and its Applications, vol 153. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9554-4_19

Download citation

Publish with us

Policies and ethics