Skip to main content

Existence of a Unique Solution to a Nonlinear Moving-Boundary Problem of Mixed Type Arising in Modeling Blood Flow

  • Conference paper
  • First Online:
Nonlinear Conservation Laws and Applications

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 153))

Abstract

We prove the (local) existence of a unique mild solution to a nonlinear moving-boundary problem of a mixed hyperbolic-degenerate parabolic type arising in modeling blood flow through compliant (viscoelastic) arteries.

AMS(MOS) subject classifications. 35M10, 35G25, 35K65, 35Q99, 76D03, 76D08, 76D99.

Research supported by NSF under grant DMS-0806941, by NSF/NIH grant number DMS-0443826, and by the Texas Higher Education Board under ARP grant 003652- 0051-2006.

Research supported by NSF/NIH under grant DMS-0443826.

Graduate Student Support by the NSF/NIGMS under grant 0443826, and by the Texas Higher Education Board under ARP grant 003652-0051-2006.

Research supported by the NSF under grant DMS-0811138, and by the Texas Higher Education Board under ARP grant 003652-0051-2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adams. Sobolev. Spaces. Second Edition. Academic Press, New York 2008.

    Google Scholar 

  2. R.L. Armentano, J.G. Barra, J. Levenson, A. Simon, and R.H. weak Pichel. Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76 (1995), pp. 468–478.

    Google Scholar 

  3. R.L. Armentano, J.L. Megnien, A. Simon, F. Bellenfant, J.G. Barra, and J. Levenson. Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26 (1995), pp. 48–54.

    Google Scholar 

  4. R.D. Bauer, R. Busse, A. Shabert, Y. Summa, and E. Wetterer. Separate de-termination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo. Pflugers Arch. 380 (1979), pp. 221–226.

    Article  Google Scholar 

  5. S. Čanić and E.-H. Kim. Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axi-symmetric vessels, Mathematical Methods in the Applied Sciences, 26(14) (2003), pp. 1161–1186.

    Article  MathSciNet  Google Scholar 

  6. S. Čanić, J. Tambača, G. Guidobini, A. Mikelić, C.J. Hartley, and D. Rosen- strauch. Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow SIAM J. App. Math., V 67-1 (2006), 164–193.

    Google Scholar 

  7. S. Čanić, A. Mikelić, D. Lamponi, and J. Tambača. Self-Consistent Effec-tive Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries. SIAM J. Multiscale Analysis and Simulation 3(3) (2005), pp. 559–596.

    Article  Google Scholar 

  8. S. Čanić, C.J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni, and A. Mikelić. Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics and Experimental Validation. Annals of Biomedical Engineering. 34 (2006), pp. 575–592.

    Article  Google Scholar 

  9. D. Coutand and S. Shkoller. On the motion of an elastic solid inside of an incompressible viscous fluid. Archive for rational mechanics and analysis, Vol. 176, pp. 25–102, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Coutand and S. Shkoller. On the interaction between quasilinear elastodynamics and the Navier-Stokes equations Archive for Rational Mechanics and Analysis, Vol. 179, pp. 303–352, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Chambolle, B. Desjardins, M. Esteban, and C. Grandmont. Existence of weak solutions for an unsteady fluid-plate interaction problem. J Math. Fluid Mech. 7 (2005), pp. 368–404.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Desjardin, M.J. Esteban, C. Grandmont, and P. Le Tallec. Weak solutions for a fluid-elastic structure interaction model. Revista Mathem’atica complutense, Vol. XIV, num. 2, 523–538, 2001.

    Google Scholar 

  13. L.C. Evans, Parrial differential equations. Graduate Studies in Mathematics, (19), American Mathematical Society, RI 2002.

    Google Scholar 

  14. M. Guidorzi, M. Padula, and P. Plotnikov. Galerkin method for fuids in domains with elastic walls. University of Ferrara, Preprint.

    Google Scholar 

  15. A. Mikelić. Bijectivity of the Frechét derivative for a Biot problem in blood flow. Private communication. Dec 19, 2009.

    Google Scholar 

  16. F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, Ph.D. Thesis, EPFL, Lausanne, 2001.

    Google Scholar 

  17. G. Pontrelli. A mathematical model of flow through a viscoelastic tube. Med. Biol. Eng. Comput, 2002.

    Google Scholar 

  18. A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Survey article, Comput. Visual. Sci. 2 (2000), pp. 163–197.

    Article  MATH  Google Scholar 

  19. T.-B. Kim. Some mathematical issues in blood flow problems. Ph.D. Thesis. University of Houston 2009.

    Google Scholar 

  20. T.-B. Kim, S. čanić, G. Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis. To appear (2009).

    Google Scholar 

  21. B. da Veiga. On the existence of strong solutions to a coupled fluid-structure evolution problem. Journal of Mathematical Fluid Mechanics, Vol. 6, pp. 1422–6928 (Print), pp. 1422–6952 (Online), 2004.

    Google Scholar 

  22. E. Zeidler. Nonlinear Functional Analysis and its Applications I. (Fixed Point Theorems) 1986, Springer-Verlag New York, Inc.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andro Mikelić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Čanić, S., Mikelić, A., Kim, TB., Guidoboni, G. (2011). Existence of a Unique Solution to a Nonlinear Moving-Boundary Problem of Mixed Type Arising in Modeling Blood Flow. In: Bressan, A., Chen, GQ., Lewicka, M., Wang, D. (eds) Nonlinear Conservation Laws and Applications. The IMA Volumes in Mathematics and its Applications, vol 153. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9554-4_11

Download citation

Publish with us

Policies and ethics