Skip to main content

A Mixed-Voltage Unified Receiver Front-End for Full-Band Mobile TV in 65-nm CMOS

  • Chapter
  • First Online:
  • 1425 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

With improved device parasitics in nm-length CMOS processes, wideband RF circuits offer the desired compactness and power efficiency for realizing multi-band multi-standard radios. This chapter describes a receiver front-end (RFE) targeting the mobile-TV applications using mixed-voltage techniques. It covers the VHF-III (174–248 MHz), UHF (470–862 MHz) and L (1.4–1.7 GHz) bands, where standards like T-DMB, ISDB-T, DVB-H and DMB-T are resided. In order to meet the noise and linearity specifications [1], while avoiding external baluns or repeated RFEs that were still common in existing solutions [1, 2], a number of circuit techniques are proposed to enhance the performance, power and area efficiencies [3]. Together they lead to state-of-the-art performance, while saving 58% area compared to the 1.1 mm2 reported in [2]. The key design considerations are outlined as follows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vassilios, K. Vavelidis and N. Haralabidis et al, “A 65-nm CMOS Multistandard, Multiband TV Tuner for Mobile and Multi-Media Applications,” IEEE J. Solid-State Circuits, vol. 43, pp. 1522–1533, Jul. 2008.

    Google Scholar 

  2. M. Jeong, B. Kim and Y. Cho et al, “A 65 nm CMOS Low-Power Small-Size Multistandard, Multiband Mobile Broadcasting Receiver SoC,” ISSCC Dig. Tech. Papers, pp. 460–461, Feb. 2010.

    Google Scholar 

  3. P.-I. Mak and R. P. Martins, “A 0.46 mm2 4-dB NF Unified Receiver Front-End for Full-Band Mobile TV in 65 nm CMOS,” ISSCC Dig. Tech. Papers, pp.172–173, Feb. 2011.

    Google Scholar 

  4. S. Blaakmeer, E. Klumperink, D. Leenaerts and B. Nauta, “Wideband Balun-LNA with Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling,” IEEE J. Solid-State Circuits, vol. 43, pp. 1341–1350, Jun. 2008.

    Article  Google Scholar 

  5. D. Mastantuono and D. Manstretta, “A Low-Noise Active Balun with IM2 Cancellation for Multiband Portable DVB-H Receivers,” ISSCC Dig. Tech. Papers, pp. 216–217, Feb. 2009.

    Google Scholar 

  6. Datasheet of TDK Low Pass Filters for DVB-H/ISDB-T DEA Series DEA200710LT-1238A1.

    Google Scholar 

  7. V. Giannini, P. Nuzzo, C. Soens et al, “A 2-mm2 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS,” IEEE J. Solid-State Circuits, vol. 44, pp. 3486–3498, Dec. 2009.

    Article  Google Scholar 

  8. J. Weldon, J. Rudell, L. Lin et al, “A 1.75-GHz Highly Integrated Narrowband CMOS Transmitter with Harmonic-Rejection Mixers,” ISSCC Dig. Tech. Papers, pp. 160–161, Feb. 2001.

    Google Scholar 

  9. Z. Ru, E. Klumperink, G. Wienk, and B. Nauta, “A Software-Defined Radio Receiver Architecture Robust to Out-of-Band Interference,” ISSCC Dig. Tech. Papers, pp. 230–231, Feb. 2009.

    Google Scholar 

  10. B. Razavi, “Cognitive Radio Design Challenges and Techniques,” IEEE J. of Solid-State Circuits, vol. 45, pp. 1542–1553, Aug. 2010.

    Article  Google Scholar 

  11. J. Borremans, G. Mandal, V. Giannini, T. Sano, M Ingels, B. Verbruggenn and J. Craninckx “A 40 nm CMOS Highly Linear 0.4-to-6 GHz Receiver Resilient to 0dBm Out-of-Band Blockers,” ISSCC Dig. Tech. Papers, pp. 62–63, Feb. 2011.

    Google Scholar 

  12. W. Zhuo, X. Li, S. Shekhar, S.H.K. Embabi, J. Pineda de Gyvez, D.J. Allstot and E. Sanchez-Sinencio, “A Capacitor Cross-Coupled Common-Gate Low Noise Amplifier,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, pp. 875–879, Dec. 2005.

    Article  Google Scholar 

  13. E. Klumperink, S. Louwsma, G. Wienk and B. Nauta, “A CMOS Switched Transconductor Mixer,” IEEE J. Solid-State Circuits, Vol. 39, pp. 1231–1240, Aug. 2004.

    Article  Google Scholar 

  14. A. Pirola, A. Liscidini and R. Castello, “Current-Mode, WCDMA Channel Filter with In-Band Noise Shaping,” IEEE J. Solid-State Circuits, vol.45, no.9, pp.1770–1780, Sept. 2010.

    Article  Google Scholar 

  15. D. Y. Jeong, S. H. Chai, W. C. Song and G. H. Cho, “CMOS Current-Controlled Oscillators Using Multiple-Feedback-Loop Ring Architectures,” ISSCC Dig. Tech. Papers, pp. 386–387, Feb. 1997.

    Google Scholar 

  16. L. C. Cho, C. Lee, and S. I. Liu, “A 1.2-V 37–38.5-GHz Eight-Phase Clock Generator in 0.13-μm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1261–1270, Jun. 2007.

    Article  Google Scholar 

  17. X. Gao, E. A. M. Klumperink and B. Nauta, “Advantages of Shift Registers Over DLLs for Flexible Low Jitter Multiphase Clock Generation,” IEEE Trans. on CAS–II: Express Briefs, vol. 55, no. 2, pp. 244–248, Mar. 2009.

    Google Scholar 

  18. K. H. Kim, P. W. Coteus, D. Dreps et al, “A 2.6 mW 370 MHz-to-2.5 GHz Open-Loop Quadrature Clock Generator,” ISSCC Dig. Tech. Papers, pp. 458–459, Feb. 2008.

    Google Scholar 

  19. F. Tillman, H. Sjoland, “A Polyphase Filter Based on CMOS Inverters,” NORCHIP Conf., pp. 12–15, Nov. 2005.

    Google Scholar 

  20. Lei Lu, Zhichao Gong, Youchun Liao, et al, “A 975-to-1960 MHz Fast-Locking Fractional-N Synthesizer with Adaptive Bandwidth Control and 4/4.5 Prescaler for Digital TV Tuners” ISSCC Dig. Tech. Papers, pp. 396–397, Feb. 2009.

    Google Scholar 

  21. K.-F. Un, P.-I. Mak and R. P. Martins, “Analysis and Design of Open-Loop Multi-Phase Local-Oscillator Generator for Wireless Applications,” IEEE Trans. on CAS-I: Regular Papers, vol. 57, no. 5, pp.970–981, May 2010.

    MathSciNet  Google Scholar 

  22. T. Wu, K. Mayaram, and U. Moon, “An On-Chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 775–783, Apr. 2007.

    Article  Google Scholar 

  23. Y.-T. Huang, C. M. Yang, S. C. Huang, H. L. Pan, T. C. Hung, “A 1.2 V 67 mW 4 mm2 Mobile ISDB-T Tuner in 0.13 μm CMOS,” ISSCC Dig. Tech. Papers, pp. 124–125, Feb. 2009.

    Google Scholar 

  24. Z. Ru, E. Klumperink, C. Saavedra and B. Nauta, “A 300–800 MHz Tunable Filter and Linearized LNA Applied in a Low-Noise Harmonic-Rejection RF Sampling Receiver,” IEEE J. Solid-State Circuits, vol. 45, pp. 967–978, May 2010.

    Article  Google Scholar 

  25. A. Liscidini et al., “Single-stage low-power quadrature RF receiver front-end: The LMV cell,” IEEE J. Solid-State Circuits (JSSC), vol. 41, no. 12, pp. 2832–2841, Dec. 2006.

    Article  Google Scholar 

  26. S.C. Blaakmeer, E. Klumperink, D. Leenaerts, B. Nauta, “The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology,” IEEE J. of Solid-State Circuits (JSSC) vol.43, no.12, pp.2706–2715, Dec. 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mak, PI., Martins, R.P. (2012). A Mixed-Voltage Unified Receiver Front-End for Full-Band Mobile TV in 65-nm CMOS. In: High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9539-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9539-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9538-4

  • Online ISBN: 978-1-4419-9539-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics